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Abstract

Crimes, forest fires, accidents, infectious diseases, human interactions with mobile de-

vices (e.g., tweets) are being logged as spatiotemporal events. For each event, its spatial

location, time and related attributes are known with high levels of detail (LoDs). The LoD

of analysis plays a crucial role in the user’s perception of phenomena. From one LoD to

another, some patterns can be easily perceived or different patterns may be detected, thus

requiring modeling phenomena at different LoDs as there is no exclusive LoD to study

them.

Granular computing emerged as a paradigm of knowledge representation and pro-

cessing, where granules are basic ingredients of information. These can be arranged in a

hierarchical alike structure, allowing the same phenomenon to be perceived at different

LoDs. This PhD Thesis introduces a formal Theory of Granularities (ToG) in order to

have granules defined over any domain and reason over them. This approach is more

general than the related literature because these appear as particular cases of the pro-

posed ToG. Based on this theory we propose a granular computing approach to model

spatiotemporal phenomena at multiple LoDs, and called it a granularities-based model.

This approach stands out from the related literature because it models a phenomenon

through statements rather than just using granules to model abstract real-world entities.

Furthermore, it formalizes the concept of LoD and follows an automated approach to

generalize a phenomenon from one LoD to a coarser one.

Present-day practices work on a single LoD driven by the users despite the fact that

the identification of the suitable LoDs is a key issue for them. This PhD Thesis presents a

framework for SUmmarizIng spatioTemporal Events (SUITE) across multiple LoDs. The

SUITE framework makes no assumptions about the phenomenon and the analytical task.

A Visual Analytics approach implementing the SUITE framework is presented, which

allow users to inspect a phenomenon across multiple LoDs, simultaneously, thus helping

to understand in what LoDs the phenomenon perception is different or in what LoDs

patterns emerge.

Keywords: Spatiotemporal events, granularity, level of detail, visual analytics
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Resumo

Crimes, incêndios florestais, doenças infecciosas estão a ser registados como eventos

espácio-temporais. Para cada evento, a sua localização espacial, tempo e atributos re-

lacionados são conhecidos com grandes níveis de detalhe (NdDs). O NdD de análise tem

um papel fundamental na percepção dos fenómenos. De um NdD para outro, alguns

padrões podem ser facilmente perceptíveis ou diferentes padrões podem ser detectados,

requerendo que os fenómenos sejam modelados a diferentes NdDs, uma vez que não

existe apenas um NdD para os estudar.

A computação granular emergiu como o paradigma de representação de conheci-

mento e processamento, onde grânulos são ingredientes básicos de informação. Estes

podem ser organizados numa estrutura hierárquica, permitindo que o mesmo fenómeno

seja observado a diferentes NdDs. Esta dissertação introduz uma teoria formal de gra-

nularidades (TdG) de modo a ter grânulos definidos sobre qualquer domínio e a poder

raciocinar sobre eles. Esta abordagem é mais geral do que a literatura relacionada por-

que as propostas da literatura mostraram-se casos particulares da TdG proposta. Com

base nesta, uma abordagem de computação granular é proposta para modelar fenómenos

espácio-temporais a múltiplos NdDs, designada de modelo baseado em granularidades.

Esta abordagem destaca-se da literatura por modelar um fenómeno através de declara-

ções em vez de apenas utilizar os grânulos para modelar entidades abstractas do mundo

real. Além disso, formaliza o conceito de NdD e segue uma abordagem automática para

generalizar o fenómeno de um NdD para outro menos detalhado.

As práticas actuais trabalham num NdD conduzido pelos utilizadores apesar da iden-

tificação dos NdDs apropriados ser um problema chave. É apresentada uma framework

para sumarizar eventos espácio-temporais em múltiplos NdDs. Esta framework não faz

qualquer assumpção sobre o fenómeno e a tarefa analítica. É apresentada uma aborda-

gem de visualização analítica, que permite aos utilizadores inspeccionar um fenómeno

em múltiplos NdDs, simultaneamente, ajudando a entender em quais NdDs a percepção

do fenómeno se distingue ou em que NdDs emergem padrões.

Palavras-chave: Eventos espácio-temporais, granularidade, nível de detalhe
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Introduction

With the widespread adoption of location aware devices, organizations are gathering data

(Committee et al. 2013), concerning information about geographic location and time

(Li et al. 2016) at incredible rates. These data are usually called spatiotemporal data

and contain information about natural phenomena or human activities occurring on or

near the surface of the Earth like telecommunications, social networks, transport, health,

meteorology and agriculture, among many others.

Many phenomena like crimes1, storms2, forest fires3, infectious diseases (Gabriel et al.

2013), traffic accidents4, social networks (e.g., Twitter) are being logged as a collection of

spatiotemporal events at high levels of detail (LoDs).

A spatiotemporal event is a happening occurred in space and time (Yuan and Hornsby

2007). For example, homicide((41.8780377, -87.6294422), 09/05/2015 20:00, 2) stands for

a homicide occurred on the latitude and longitude coordinates (41.8780377, -87.6294422)

that happened at eight o’clock resulting in two victims; fire((42.013990, -8.454387),
27/07/2016 14:30, 130) describes a forest fire that has started at coordinates (42.013990,

-8.454387) on 27th July 2016 at 14:30 hours leading to 130 hectares of burnt forest area.

This way, spatiotemporal events could be described as data with the following structure:

event(S, T , A1, . . . , AN ) where S describes the geographic location of the event, T specifies

the time moment, and A1, . . . , AN are attributes detailing what has happened.

1Crimes in City of Chicago: http://data.cityofchicago.org/
2Storm events in USA: http://www.spc.noaa.gov/wcm/
3Forest fires in Portugal: http://www.icnf.pt/portal/florestas/dfci
4Traffic accidents in USA: ftp://ftp.nhtsa.dot.gov/fars/

1
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CHAPTER 1. INTRODUCTION

Datasets of spatiotemporal events embody the spatiotemporal dynamics of phenom-

ena that includes data attributes changing over time or establishing several relation-

ships or interactions with the surrounding environment. Underlying the complexity/dy-

namism inherent to spatiotemporal events, there might be hidden patterns to be uncov-

ered (Miller and Han 2009).

Patterns are non-uniform distributions of events occurring in space or/and in time

that reveal the underlying structure of a phenomenon (Mennis and Guo 2009). The

appearance of crime hotspots in certain city areas is an example of a spatial pattern;

hotspots of robberies near residential areas and hotspots of murders near town bars is

an example of a spatial pattern with correlation between the attributes crime type and

neighborhood type. An increase in the number of traffic accidents during the summer in

every year is an example of a temporal pattern. The occurrences of tornadoes in particular

spatial regions and in particular periods of the year, or the contagion of a disease are

examples of spatiotemporal patterns.

Understanding patterns can be important for the decision-making of several orga-

nizations. For example, in public safety (Leipnik and Albert 2003), crime analysts are

interested in discovering spatiotemporal hotspots of crime events in order to effectively

allocate police resources. Epidemiologists (Ostfeld et al. 2005) need to understand spa-

tiotemporal patterns from disease events so that the officials can allocate resources to

limit its spreading. In what concerns the environment, state officials aim to understand

spatiotemporal patterns of wildfire occurrences so that optimal firefighting resources and

development projects can be placed in appropriate areas (Hering et al. 2009).

Visual Analytics (VA) aims at extracting patterns from data through smart combina-

tion of automatic algorithms and interactive visualization (Thomas and Cook 2006). By

relying on human capabilities such as perception and domain knowledge, VA lets users

to interactively explore the data and generate hypotheses while leveraging methods from

knowledge discovery, data mining, artificial intelligence, statistics and mathematics.

Over the last years, several VA approaches have been developed that allow us to

explore and analyze datasets of spatiotemporal events (Roth et al. 2010; MacEachren

et al. 2011; Chae et al. 2012; Andrienko et al. 2013; Lins et al. 2013; Cho et al. 2016;

Robinson et al. 2016). For example, the GeoVista research center developed CrimeViz

(Roth et al. 2010) to study crimes and Senseplace (MacEachren et al. 2011) to support

crisis management through the tweets posted; Lins et al. 2013 developed an approach

to analyze numerous quantities of spatiotemporal events that was used to explore events

about crimes, social networks, among others; Cho et al. 2016 developed an approach,

called VAiRoma, for users to gain knowledge about places and events related to Roman

history. An overview of the above mentioned tools’ interfaces can be seen in Figure 1.1.

In general, the VA approaches developed, aiming at exploratory analysis of spatiotem-

poral events, use interactive visualizations (Van Ho et al. 2012) like maps/thematic maps,

time series, bar charts (among others) to display metrics about phenomena using descrip-

tive statistics including minimum, maximum, mean, sum, among others. Maps allow
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Figure 1.1: An overview of three approaches to explore spatiotemporal events: The tool
one refers to (Lins et al. 2013); two refers to CrimeViz (Roth et al. 2010); and, three
corresponds to VAiRoma (Cho et al. 2016).

us to understand how the intensity of a phenomenon is distributed throughout the ge-

ographic space, considering all or a particular time interval in which the phenomenon

occurred; time series allow us to study how a phenomenon is distributed over time, con-

cerning the entire geographic extent or a certain geographic region where a phenomenon

occurs. Some examples of questions typically handled by these approaches are:

1. What is the spatial distribution of the phenomenon? Is it uniform or are there

geographic regions with higher incidence?

2. How does the intensity of the phenomenon vary over time? Does it follow a decreas-

ing or an increasing trend? Is there a cyclic pattern?

Let’s assume that we need to explore the dataset of spatiotemporal events about crimes

in the city of Chicago, in particular battery crimes, using the tool made available by (Lins

et al. 2013) (see the tool one in Figure 1.1). Notice that, the time series (at the bottom) and

the map are showing the number of crimes occurred. Using such a tool, or others that

follow similar interfaces, we can perceive through the time series that the occurrence of
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crimes has a cyclical behavior over time and follows a decreasing trend. Looking at the

map, we can see that the phenomenon is almost uniformly spatially distributed.

Although this tool (or similar ones) provides a spatial and temporal overview of the

phenomenon that is enough to answer several questions, namely those mentioned, there

may be a number of other questions, which can be important for several organizations

(Leipnik and Albert 2003; Ostfeld et al. 2005). Some examples are given:

1. Does the incidence of events follow some spatiotemporal pattern so that the events

occur together close in time and space? In that case, are these spatiotemporal

hotspots occurring across the entire geographic extent in which the phenomenon

occurs, or do they arise only in some geographic regions?

2. Does the occurrence of events follow any contagious behavior 5?

3. Do the events occur geographically dispersed over time? Or do they occur in a clus-

tered way? Are there changes in the spatial distribution? Do the events sometimes

occur in a dispersed form and sometimes they happen in clusters? Do these changes

follow a particular pattern over time? Or does the phenomenon generally have a

stable structure (let’s say dispersed) and suddenly, in a particular moment in time,

the events occur spatially clustered (moment of time as an outlier).

4. What is the pattern of occurrence of events over time concerning a particular ad-

ministrative area? Do the events occur cyclically? Do the administrative regions

close to each other following similar patterns of occurrence of events?

There is a substantial difference between the first set of questions presented and the

second one. The first group is performing separate analyses of the spatial and the tem-

poral dimension of the events, which are of limited value (Bogorny and Shekhar 2010;

Møller and Ghorbani 2010; Wang and Yuan 2014). However, many pieces of information

about the spatiotemporal dynamic of events like spatiotemporal patterns arise when one

works with the spatial and temporal dimensions together, as the second group of ques-

tions requires, something that’s challenging (Gabriel et al. 2013; Shekhar et al. 2015).

One needs to account for the properties that distinguish spatiotemporal events from other

types of data (Andrienko et al. 2010). These properties are dependency and heterogene-

ity (Yao 2003). Dependency can be explained through Tobler’s first law: "everything is
related to everything else but nearby things are more related than distant things" (Tobler 1970).

The other property is the spatial heterogeneity and temporal non-stationarity, i.e., spa-

tiotemporal events do not follow a similar distribution across the entire space and over all

time. Instead, different geographical regions and temporal periods may follow different

distributions.

5A “cloud” of events occur near in space and time that slowly changes its spatial location throughout
time (Ostfeld et al. 2005).
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Since, in general, present-day visual analytical approaches develop interactive visu-

alizations to display the results of descriptive statistics, many patterns might not be

captured (Kechadi et al. 2009; Miller and Han 2009; Shekhar et al. 2015). Even so, there

are VA approaches (Maciejewski et al. 2010; Landesberger et al. 2012; Ferreira et al.

2013), usually developed to analyze a particular phenomenon (e.g., crimes), focusing

on a particular kind of pattern (e.g, spatiotemporal hotspots). However, this may not

be enough whether we aim at an approach independent from the application domain.

Patterns might appear in many different forms and targeting a particular kind of pat-

tern may leave many patterns to be detected. Nevertheless, the importance of patterns

might depend on the specific application, the analysis question, and its concordance with

domain knowledge (Keim et al. 2008; Sips et al. 2012).

1.1 The Level of Detail Matters

When one looks at spatiotemporal events, they can be expressed at different LoDs. The

spatial location can be described using cells with different sizes (e.g., cells of 2 km2 or

8 km2), cities, counties or states; and the time can be specified with a detail of minutes,

hours, months or years. The LoD reflects the size of the units in which phenomena are

observed and often aggregated/summarized, most likely affecting our understanding of

them (Marceau 1999; Andrienko et al. 2010; Laurini 2014).

A change in the LoD at which a phenomenon is observed can bring improvements to

the analytical process (Camossi et al. 2008; Andrienko et al. 2010). From one LoD to

another, some patterns can become easily perceived or different patterns may be detected.

On one hand, different spatiotemporal phenomena exist and evolve at different LoDs, and

on the other hand, a phenomenon may exhibit different patterns in different LoDs.

Some examples can be found in the literature. For example, Sips et al. 2012 describe a

use case using glacial climate record data derived from an ice core from Dronning Maud

Land, Antarctica. The ice core represents South Atlantic temperature in the past 150k

years. Sips et al. 2012 provide the visualization method developed for scientists of the

domain to detect strong temperature fluctuations. Those scientists report the highest

fluctuations at the 10k year time scale (i.e., LoD) in comparison to other time scales. In

that LoD, the highest fluctuations happened between the 10k-20k years before the present

interval and 130k-140k years. This discovery allows them to make the hypothesis that

the detected strong temperature fluctuations might be related to the 100k years cycle

of the Milankovitch cycles6; Gabriel et al. 2013 investigate data about an epidemic in

animals that occurred in 2001 at the Cumbria county in order to find out in what spatial

and temporal LoDs the evidence of spatiotemporal hotspots emerge. In their approach,

a change in the LoD means a change in the distance considered. The authors considered

spatial distances of 5, 10, 15 km and temporal distances of 5, 10, 15 days. They found

6The 100k years cycle of the Milankovitch cycles describes the transition from a circular to an ellipsoidal
orbit of the Earth around the Sun
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evidence of spatiotemporal hotspots in temporal distances less than 10 days, and spatial

distances less than 5 km. More examples can be found in the literature (Qi and Wu 1996;

Wu et al. 2000; Dykes and Brunsdon 2007; Camossi et al. 2008; Plumejeaud et al. 2011;

Goodwin et al. 2016; Zhang et al. 2016).

The LoD matters for the perception of phenomena and their underlying patterns, and

often, there is no exclusive LoD to study phenomena (Dykes and Brunsdon 2007; Camossi

et al. 2008; Andrienko et al. 2010; Sips et al. 2012; Goodwin et al. 2016). Although

the LoD plays a crucial role in data analysis and pattern detection, this issue has been

ignored with commercial analytical tools (e.g., Qlik, Tableau Software) and most of the

state of the art proposals following a single LoD analysis approach (Dykes et al. 2005;

Andrienko and Andrienko 2006; Power 2008; Zhang et al. 2012).

Users are left with the choice of the LoD(s) to look for patterns. The LoDs in which

patterns can be perceived are often difficult to determine a priori (Sips et al. 2012). There

might be several forms of patterns and these might be better perceived in some LoDs

than in others, or even, different patterns might be perceived in different LoDs. If one

considers n temporal LoDs and m spatial LoDs then there are n ∗m spatiotemporal LoDs

that can be studied in order to look for patterns as illustrated in Figure 1.2. Looking

for patterns in different LoDs might be time-consuming and unproductive, following an

analysis approache based on a single LoD (Camossi et al. 2008; Andrienko et al. 2010;

Sips et al. 2012; Goodwin et al. 2016).

Figure 1.2: Many LoDs to look for patterns.

When someone is not familiar with a spatiotemporal phenomenon, i.e., an early stage

of analysis, users can easily fall into a condition of information overload (Keim et al.

2008). By information overload, we mean, users face difficulties to develop a clear un-

derstanding of patterns that might be embedded in datasets of spatiotemporal events

(Gabriel 2014; Robinson et al. 2016). From our point of view, this happens because VA
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approaches communicate information mainly through descriptive statistics with some

exceptions but focusing on a very particular pattern and application domain. Both op-

tions are not suitable for an early stage of analysis. Equally important, such approaches

follow an analysis approach based on a single LoD, leaving the choice for the users. With-

out any help, this choice will remain a challenging task, as discussed, contributing for

the information overload when conducting analyses over spatiotemporal events at early

stages.

1.2 Research Statement

To face the information overload, from the user perspective, the VA area introduced an

analysis approach: "Analyze first, show the important, zoom, filter and analyze further, details
on demand" (Keim et al. 2008) known as the Visual Analytics Mantra (VA Mantra). It aims

to provide the user with an understandable high-level overview of what is important, at

an early stage of the analysis, thus reducing the data amount/complexity in order to make

it analyzable and meaningful. Such approach aims to provide what is important from the

available data to a given user at a given context so that he can conduct his analysis based

on meaningful information.

When there is little information about a spatiotemporal phenomenon or the analyt-

ical goals are vague, i.e., an early stage of analysis, a user will probably experience an

information overload. In spatiotemporal events, an approach to overcome this problem

is to move from a single user-driven LoD to a multiple LoDs (simultaneously) analysis

approach , providing the user with an understandable high-level overview of the under-

lying structure of the phenomenon for each LoD. By understandable high-level overview,

we mean several hints about the distribution of events in space or/and in time that can

provide a glimpse of the presence or absence of patterns. Following this approach, the

user might detect very soon in what LoDs there are potential patterns and what kind of

they are. According to his analytical goal and domain knowledge, the user would be able

to better guide his analysis thus avoiding the information overload.

Despite the fact that literature recognizes the importance of LoD in the perception

of phenomena and the need for users to study and explore phenomena across multiple

LoDs (Dykes and Brunsdon 2007; Camossi et al. 2008; Andrienko et al. 2010; Sips et al.

2012; Goodwin et al. 2016), there are no approaches that work across several LoDs in the

context of spatiotemporal events, and following the VA Mantra. The research problem

addressed in this dissertation, can be stated as:

How can we help users explore phenomena logged as spatiotemporal events across
multiple LoDs, simultaneously, helping them to understand in what LoDs there are
patterns emerging?

This broad formulation hides specific problems that cross different research areas
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namely knowledge representation, data processing and visualization. In detail, this work

seeks to address the following problems:

1. How do we enable representation and reasoning about spatiotemporal events at dif-

ferent LoDs? Making analyses across multiple LoDs requires modeling spatiotem-

poral events at different LoDs.

a) What is a LoD? How do we formalize the concept of LoD?

b) How do we model a phenomenon at different LoDs?

c) Datasets of spatiotemporal events are collected at high LoDs. How do we follow

a bottom-up automated approach in order to provide different phenomena’s

representations for each LoD?

2. With the datasets of spatiotemporal events available at multiple LoDs, we aim to

provide analyses across them.

a) How do we provide an understandable high-level overview about the underly-

ing structure of the phenomenon for each LoD?

b) How will the users inspect and compare the phenomenon perception across

multiple LoDs?

c) How do we provide an approach independent from the phenomenon without

focusing on a particular analytical task or pattern?

A general overview of the problems solved and the results obtained during the research

is given in the next section.

1.3 Research Goals and Contributions

The broad objective of the research introduced lies on enhancing exploratory analysis

of spatiotemporal events, at early stages, by following analyses across multiple LoDs.

Such approach aims to allow users to be able to inspect and compare the phenomenon’s

perception across multiple LoDs. To observe spatiotemporal events at different LoDs, we

first need to represent and reason about spatiotemporal events at different LoDs.

1.3.1 Theory of Granularities

Granular computing has emerged as a paradigm of knowledge representation and pro-

cessing (Yao et al. 2013), where granules are basic ingredients of information. Roughly,

a granularity defines a division of a domain in a set of granules disjoint from each other.

Counties, States are common examples of spatial granularities defined over the spatial

domain; Hours, Days are common examples of temporal granularities. Erikson’s stages
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of psychosocial development (Erikson 1959) is an example of a granularity defined over

the natural numbers 7.

Granules can be useful to express spatiotemporal events at different LoDs.

Let’s consider that we have a dataset of homicides events with the following

structure: homicide(S, T , Killer Age). A homicide event originally logged as

homicide((41.87803777,−87.62944228), 09/05/2015 20 : 42, 23) could be expressed at

coarser LoD like homicide(Illinois, 09/05/2015 20h, Early Adulthood) using granules

from the granularities States, Hours, Erikson′s stages, correspondingly. However, in

general, the granularity definitions found in the literature are applicable to particular

domains like the time domain (Bettini et al. 2000) or the spatial domain (Camossi et al.

2006). This prevents us from representing and reasoning about events at different LoDs

following a granular approach since there are different domains of reference underlying

the events’ features.

This PhD Thesis proposal introduces a formal Theory of Granularities (ToG) that

allows the creation of granules over any domain of reference. This approach is more

general than the current state of the art because the existing proposals appear as particular

cases of the ToG proposed. Besides, it provides new instruments to reason over granules.

Often, the domains of reference have relations defined between their elements. Four

induced relations are proposed in order to transpose the relations defined in the domains

of reference to the granules. Some of those relations have properties like symmetric,

transitive, reflexive, antisymmetric, and antireflexive. The circumstances in which the

induced relations inherit those properties were studied. This study goes together with

formal proof conducted in the natural deduction system. These contributions led to one

publication in the International Conference on Computational Science and Applications,

and one publication in the International Journal Business Intelligence and Data Mining:

J. M. Pires, R. A. Silva, and M. Y. Santos, "Reasoning about Space and Time: Moving
towards a Theory of Granularities," in Computational Science and Its Applications -
ICCSA 2014, Springer, 2014, pp. 328–343

R. A. Silva, J. M. Pires, and M. Y. Santos, "A granularity theory for modelling
spatio-temporal phenomena at multiple levels of detail," Int. J. Bus. Intell. Data Min.,
vol. 10, no. 1, p. 33, 2015.

1.3.2 Granularities-based Model

Using the ToG one can express individually spatiotemporal events at different LoDs.

However, and up to this point, the concept of LoD is not defined and there is no model

following an automated approach to generalize a phenomenon from one LoD to a coarser

7Erikson’s stages: (i) Infancy - 0-1 years; (ii) Early childhood 2nd year; (iii) Preschool age 3–5 years; (iv)
School age 6–12 years; (v) Adolescence 13–18 years; (vi) Early adulthood 19–39 years; (vii) Adulthood 40–64
years; (viii) Maturity 65-death
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one. An automated approach is crucial as the number of LoDs from which one can

perceive a phenomenon can be meaningful.

A granular computing approach was devised to model spatiotemporal phe-

nomena at multiple LoDs labeled as the granularities-based model. This ap-

proach models a phenomenon through a collection of statements where, roughly

speaking, granules are used in the statements’ arguments. For example,

homicide(Illinois, 09/05/2015 20h, Early Adulthood) is an example of a state-

ment concerning homicides in USA. Instead of single granules, complex

descriptions can also be assigned to statements’ arguments. For example,

tornado(RasterRegion(cells), Interval(09/05/2015 15 : 45, 09/05/2015 16 : 10), 20)

stands for a tornado occurred on May 9th, 2015 between 15:45 and 16:10 pm, affect-

ing a particular area with 20 victims. Complex descriptions are defined based on the

general concept of granular term proposed in this PhD Thesis. Based on it, spatial gran-

ular terms (Cell and RasterRegion) and temporal granular terms (Instant and Interval)

were formalized.

The granularities-based model defines the concept of LoD and follows an automated

approach to generalize a phenomenon from one LoD to a coarser one. When changing a

phenomenon’s LoD a time interval can eventually be generalized to a time instant while a

region might be simplified. This approach stands out from the related literature because

(i) it models a phenomenon through statements rather than just using granules to model

abstract real-world entities; (ii) as opposed to current granular computing approaches

which are mainly concerned with indexing and aggregating data at different granularities,

the granularities-based model provides different phenomena’ representations for each

LoD; finally (iii) a phenomenon can be expressed into other coarser LoDs in an auto-

matic way. This research step led to two publications in the International Conference on

Geographic Information Science:

R. A. Silva, J. M. Pires, M. Y. Santos, and R. Leal, "Aggregating Spatio-temporal
Phenomena at Multiple Levels of Detail," in AGILE 2015, Springer International
Publishing, 2015, pp. 291–308.

R. A. Silva, J. M. Pires, M. Y. Santos, "When Granules are not enough in a Theory of
Granularities," in AGILE 2017, Springer International Publishing, 2017, (in press)

The granularities-based model was implemented in Java allowing to model phenom-

ena stored as spatiotemporal events in a PostgreSQL database system. The module re-

ceives a dataset of spatiotemporal events as input and generalizes the phenomenon for

each coarser LoD available.

1.3.3 SUITE Framework and Prototype

Through the granularities-based model, there is a phenomenon’s representation for each

LoD that leads us back to the research problem pursued in this dissertation. This PhD
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Thesis proposal presents a framework for SUmmarizIng spatioTemporal Events (SUITE)

across multiple LoDs. This framework builds summaries, at different LoDs, about phe-

nomena logged as spatiotemporal events. Based on it, the users are able to inspect and

compare the phenomenon’s perception across multiple LoDs. As our framework does not

make any assumption about the phenomenon and the analytical task, it can be widely

used to get an overview of the phenomenon under analysis. The framework establishes

five types of summaries working with space and time together. This allows us to frame

and extend many proposals in the literature that create summaries of data in the proposed

framework.

Using the SUITE’s framework, one can have many summaries measuring different

facets of the distribution of spatiotemporal events providing hints about the absence

or presence of different kinds of patterns. To the best of our knowledge, there are no

approaches that work across several spatial and temporal LoDs, and that are independent

from the analytical task and the application domain in the context of spatiotemporal

events.

To conduct analyzes in this new mindset, a web-based VA approach implementing

the SUITE framework was developed. The prototype allows to visually inspect hints

about the absence or presence of different kinds of spatiotemporal patterns at multiple

LoDs, following a coordinated strategy among the visualizations provided. Moreover,

one can study how patterns (spatial or non-spatial) evolve throughout time and also

whether they happen only in some geographic regions or in all the geographic extent of

the phenomenon. Notice that, these analyses occur always at multiple LoDs supporting

them according to their analytical goals and domain knowledge in the choice of the

suitable LoD to narrow their analyses in the future.

These research steps led to one publication in the International Conference on Geo-

graphic Information Science:

R. A. Silva, J. M. Pires, M. Y. Santos, and N. Datia, "Enhancing Exploratory
Analysis by Summarizing Spatiotemporal Events Across Multiple Levels of Detail," in
Geospatial Data in a Changing World, Springer International Publishing, 2016, pp.
219-238.

A final remark about our contributions briefly introduced so far. The ToG is non-

dependent of the data domain. The ToG is applicable independently whether the domain

is natural or real numbers, discrete, dense, continuous or n-dimensional, for instance.

The granularities-based model can be used to model any phenomena suitable to be mod-

eled through statements and not necessarily just the ones logged as spatiotemporal events.

In contrast, the SUITE’s framework and prototype were developed not focusing in a par-

ticular application domain but just considering phenomena logged as spatiotemporal

events. Nevertheless, the specificity of certain phenomena should not be ignored. There-

fore, we allow that the set of summaries measuring different facets of the distribution of
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spatiotemporal events providing hints about the absence or presence of different kinds

of patterns be fine-tuned according to the phenomenon at study.

1.3.4 Evaluation

The evaluation of our proposals was conducted with two types of datasets of spatiotempo-

ral events: (i) synthetic datasets; (ii) real datasets. In order to produce synthetic datasets

a configurable generator of spatiotemporal events was used developed by (Gabriel et al.

2013) - R package (stpp). Using it, synthetic datasets with different spatiotemporal pat-

terns like clustered, contagious, inhibitory, and infectious, in different spatiotemporal

LoDs, with different cardinality were produced.

The real datasets used were: (i) forest fires in Portugal; (ii) the dataset made public

by the Armed Conflict Location and Event Data Project8 about conflict and protest data,

occurring in Africa and Asia; (iii) crimes in the city of Chicago. These datasets contain in-

formation about different phenomena occurring in different spatial extents and different

temporal extents.

Evaluation with users was considered but turned out to be challenging. We cannot

consider any kind of user because the kind of analysis that we are aiming at is directed

to domain experts of phenomena logged through spatiotemporal events. Thus, having a

considerable number of users with balance gender, ages, backgrounds in order to allow a

suitable evaluation is a real challenge.

That being said, the SUITE prototype was used to explore both types of datasets bear-

ing in mind that when we explored synthetic datasets we knew beforehand in what spa-

tiotemporal LoD a particular pattern was generated. For most of the datasets produced,

the SUITE tool was able to provide a correct overview of the "phenomenon" allowing us

to identify the LoD(s) in which the pattern generated occurs, and therefore, the LoDs that

should be used to detail the analysis.

We then look for the patterns identified previously in the real datasets. Recognizing

some of the patterns in the phenomena logged into the real datasets, in different spa-

tiotemporal LoDs was easy. Afterward, we use the SUITE tool to explore the real datasets

from several perspectives pursuing other forms of spatiotemporal patterns. Several pat-

terns were identified at different spatiotemporal LoDs.

1.4 Thesis Structure

The remaining of the PhD Thesis is organized in the following structure:

Chapter 2 introduces fundamental concepts necessary to clearly understand the follow-

ing chapters. It also presents the state of art theories, approaches and tools related

to the matters addressed by the thesis.

8Website: http://www.acleddata.com/
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Chapter 3 presents the theory of granularities that enables us to represent and reason

about spatiotemporal events at different LoDs.

Chapter 4 presents the granularities-based model that allows us to model phenomena

at different LoDs, following a bottom-up automated approach in order to provide

different phenomena’s representations for each LoD. Then, a demonstration case

with a real dataset about tornadoes in USA is made.

Chapter 5 introduces a framework for SUmmarizIng spatioTemporal Events (SUITE)

in order to help users explore phenomena logged as spatiotemporal events across

multiple LoDs, simultaneously.

Chapter 6 presents the web-based VA prototype, called SUITE-VA, that implements our

main contributions. Afterwards, the evaluation is presented in order to discuss if

the broad objective was reached.

Chapter 7 concludes the PhD Thesis summarizing the results achieved and discussing

several pointers for future work.
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Background and Related Work

The PhD Thesis addresses new foundations to model phenomena (particularly the ones

logged through spatiotemporal events) at multiple LoDs so that we can have a bottom-up

automated approach in order to provide different views of a phenomenon for each LoD.

Also, it seeks to enhance an exploratory analysis of spatiotemporal events by following

analyses across multiple LoDs. In this chapter, we present an overview of the fundamental

concepts related to the thesis and discuss the state-of-art on its research field. This chapter

is organized as follows.

A background about VA research area is given in Section 2.1. Since VA is a multidisci-

plinary field, an overview about the main research areas is provided. This section ends by

presenting and discussing several VA approaches, supporting analyses based on a single

LoD that have been developed to make exploratory analysis of spatiotemporal events.

To conduct analyses across multiple LoDs, we need to be able to represent and model

data at different LoDs. Granular computing and its granularities concepts show potential-

ities to represent spatiotemporal events at different LoDs. For this reason, the state-of-art

about granularities is discussed in Section 2.2. Furthermore, there are several works in

the literature for modeling spatiotemporal phenomena at multiple LoDs. A discussion

about the state-of-art of these approaches is given in Section 2.3.

Our broad goal is to enhance the exploratory analysis over spatiotemporal events

through analyses at multiple LoDs. Therefore, the state-of-art about approaches conduct-

ing analyses at multiple LoDs is discussed in Section 2.4.

2.1 Visual Analytics

VA is the science of analytical reasoning supported by interactive visual interfaces

(Thomas and Cook 2006). The VA Mantra is supported by automatic and visual analysis
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methods with a tight coupling through human interaction in order to gain knowledge

from data (Keim et al. 2008).

VA aims to combine human strengths (i.e., domain knowledge, cognitive capabilities)

with the storage and processing capabilities of today’s computers to gain insights into

complex problems. Typical preprocessing tasks are like data cleaning, normalization,

aggregation, or integration of heterogeneous data sources are performed. After that, an

user may choose between applying visual or automatic analysis methods. If the latter

is used first, data mining algorithms are used in order to compute patterns from data.

Through the visualization methods, users are able to get insights from the generated

patterns as well as interact with the automatic methods by modifying parameters or

selecting other analysis algorithms.

Toggling between visual and automatic methods is a key characteristic of the VA (Keim

et al. 2008; Silva et al. 2012). This is particularly useful when there is little information

about the phenomena under study or the analytical goals are vague, once a user is directly

involved in the analysis process and may adjust his analytical goals based on the results

that he is getting. Phenomena recorded as spatiotemporal events fit this description,

since frequently users aim to identify patterns that are unknown in advance. Equally

important, the human involvement in the analytical process is crucial as the appropriate

LoDs may depend on the specific application, the analysis in question, and the domain

knowledge.

To deal with spatiotemporal data and the challenges that they it poses on data pro-

cessing and interactive visualization methods, several research areas are involved in the

visual analytics science, namely: (i) spatiotemporal data models that provide a formalism

to represent and reason about the spatiotemporal data (Erwig and Schneider 2002; Gal-

ton 2009); (ii) knowledge discovery concerns to provide useful patterns dealing with the

complexity of spatiotemporal data (Leung 2009; Mennis and Guo 2009; Miller and Han

2009); (iii) information visualization to develop novel visualization techniques in order

to make them effective to visualize spatiotemporal data (Aigner et al. 2008; De Chiara

et al. 2011). An overview of these research areas is given as follows.

2.1.1 Understanding Spatiotemporal Data

Everything that is spatial is also temporal. Spatiotemporal phenomena always occur at

some location in some time period.

Time is generally modeled based on two temporal primitives: time instants or time

intervals. Furthermore, Time is also modeled as linear or cyclic; continuous or discrete;

with total order, partial order or branching (Frank 1998a; Aigner et al. 2008).

Time instants have no duration while a time interval I is the set of all time instants

between a starting point (denoted by I−) and an ending point I+. Time points are limited

to answering questions like whether two events took place at the same time or whether

one event took place before the other. Similarly, time intervals are useful for answering
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questions like whether the events started/ended together, whether events overlapped in

time including all the questions that time points could answer. The theoretical approaches

to modeling time have been studied in literature (Vilain 1982; Allen 1983; Frank 1998b).

There are three types of topological relations considering time instants and time

intervals. Firstly, there are relations between pairs of time intervals. Such relations

were defined in Allen’s algebra (Allen 1983) which models all possible relative positions

between two time intervals. There are 13 different possibilities. They are: after, before,

meets, met by, during, contains, equal, finishes, finished by, starts, started by, overlaps,

and overlapped by. Secondly, there are relations that can be held between time instants

and time intervals or vice-versa. These relations were introduced by Vilain’s algebra

(Vilain 1982) which models all possible relative positions between a time instant and

a time interval. There are 8 basic relations in the V-algebra: before, starts, started by,

during, contains, finishes, finished by, after. Finally, there are relations that can be held

between time instants. These relations come from point algebra: <, ≤,=,,,>,≥.

Figure 2.1: Geometry Class from OpenGIS specification from (Ryden 2005).

Space is represented by spatial data types. The OpenGIS Simple Feature Specification

for SQL is an OGC specification that contains a norm defining spatial data types in a

class diagram (Ryden 2005) (see Figure 1.1). From the abstract class Geometry derives

Point, Line, Surface and GeometryCollection. Point is used to describe objects with zero

dimensions, such as a traffic accident location. Line is used to represent objects like roads

or rivers. Surface enables us to represent regions, areas or any other two-dimensional

object such as counties, natural reservations, among others. GeometryCollection allows
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for more complex objects resulting from the combination of multiple objects like a cluster

of islands.

A spatial data type defines the properties and operations on objects in space. Opera-

tions on spatial data types include, for instance, the geometric intersection, union, and

difference of spatial objects, the computation of the length of a line or the area of a region,

the test whether two spatial objects overlap or meet, and whether one object is north or

southeast of another object (Egenhofer and Sharma 1993; Schneider and Behr 2006).

Spatiotemporal data is being stored through different data types, capturing different

spatiotemporal dynamics. Spatial data can be categorized into three models, i.e., the ob-

ject model, the field model, and the spatial network model (Worboys and Duckham 2004).

Spatiotemporal data, based on how temporal information is additionally modeled, can

be categorized into three types, i.e., temporal snapshot model, temporal change model,

and event or process model (Allen 1984; Kraak and Ormeling 2003; George et al. 2007;

Yuan and Hornsby 2007; Alamri et al. 2014).

In the temporal snapshot model, spatial layers of the same theme are time-stamped.

For example, if the spatial layers are points or multi-points, the set of temporal snapshots

results into trajectories of points or georeferenced time series in case the variables are

being observed at different times on fixed locations. Similarly, snapshots can represent

trajectories of lines and polygons, or raster time series.

The temporal change model represents spatiotemporal data with a spatial layer at

a given start time, and then, considers just incremental changes. For example, it can

represent motion (i.e., speed and acceleration on spatial points) as well as rotation and

deformation on lines and polygons.

Event and process models represent temporal information in terms of events or pro-

cesses. The events are happenings (e.g., crime) whose properties do not change over time

while the processes represent entities that are subject to change over time (e.g., movement

of a person or car).

For different spatiotemporal data types different approaches have been proposed, in

different research areas, so as to get more knowledge out of them. The research we

conducted is focused on events has been already introduced. We discuss the current

state of the art concerning the geovisualization and give an overview about automatic

approaches. Subsequently several VA approaches mainly targeting spatiotemporal events

were researched and further discussed.

2.1.2 Information Visualization Approaches

Information visualization is a broad research area which further divides into the following

main categories: 2D visualization, 3D visualization, and color theory. 2D visualizations

spans along 2 axes while 3D visualizations spans along 3 axes. Examples of standard 2D

visualizations include bar charts, pie charts, line charts, maps among others. Concerning
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3D visualizations, a well-known example is Google Earth1. Color theory deals with the

suitable choice of colors in order to enhance the readability or help the visual analysis of

data. For example, the work proposed by (Harrower and Brewer 2003) helps people to

select good color schemes for maps and other graphics.

The number of visualization methods that have been developed is quite big (Bostock

et al. 2011)2. We present some examples. Maps are essential to understand the location,

extent and/or distribution of spatiotemporal events, spatial relationships, as detailed

in (Bédard et al. 2007). The Parallel Coordinates (Inselberg and Dimsdale 1991) were

designed to deal with multi-attribute data; the Circleview (Keim et al. 2004) method was

designed to allow the user to observe temporal data in a cyclical way.

To understand the dynamic of spatiotemporal events, animated maps (Andrienko

and Andrienko 2006) and change maps (Andrienko and Andrienko 2006) are often used.

However, maps only represent multi-attribute data and dynamism (Bédard et al. 2007;

Aigner et al. 2011); change maps are limited to small amounts of data and a few snapshots

(each map representing a time instant or a time interval); the effectiveness of animated

maps is therefore compromised (Tversky et al. 2002).

The role of visualization is an open issue when dealing with numerous spatiotemporal

events at high LoDs. The visualization methods get easily cluttered and become difficult

to analyze (Silva et al. 2012; Li et al. 2016). Visualization methods allowing the under-

standing of spatiotemporal events at different LoDs are still an issue that the information

visualization’s literature doesn’t handle. This happens because a visualization needs to

combine the spatial and temporal dimensions in a smart way in order be understandable,

which, in our opinion and as you can see on the lines below, is quite challenging.

Aigner et al. 2011 make a comprehensive survey of techniques used for visualizing

time-oriented data3. The visualizations were framed according to the following cate-

gories:

Frame of Reference: Abstract vs Spatial Abstract data (e.g., a bank account) has been

collected in a non-spatial context and is not per se connected to some spatial location.

Spatial data (e.g., spatial events) contains an inherent reference to spatial locations.

Number of variables: Univariate vs Multivariate Univariate data contains only one

data value per temporal primitive, whereas in the case of multivariate (or multi-

attribute) data each temporal primitive holds multiple data values.

Time Arrangement: Linear vs Cyclic Linear time corresponds to an ordered model of

time, i.e., time proceeds from the past to the future. Cyclic time domains are

composed of a finite set of recurring time elements (e.g., the seasons of the year).

1Google Earth: https://www.google.com/earth/
2D3 Gallery of Visualizations: https://github.com/d3/d3/wiki/Gallery
3The website: www.timeviz.net
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Time Primitives: Instant vs Interval Time instants have no duration. A time interval,

on the contrary, has a temporal extent greater than zero.

Visualization Mapping: Static vs Dynamic Static mapping maps time to space or maps

time to visual variables (Bertin 1983) whereas dynamic mapping maps time to time.

The former approach means that time and data are represented in a single coherent

visual representation; as opposed to that, dynamic representations use the physical

dimension of time to communicate the time dependency of the data.

Dimensionality: 2D vs 3D The representation of the temporal and spatial dimension in

a visualization can be either two-dimensional or three-dimensional.

Along with the visualizations studied (Aigner et al. 2011), the site (www.timeviz.net)

also allows users to filter the visualizations according to different categories proposed.

By choosing just visualization methods developed for spatial data, keeping all the other

categories, i.e., picking all the available visualization methods designed to analyze spa-

tiotemporal data, the results gathered are shown on Figure 2.2.

Figure 2.2: Screenshot showing the entire collection techniques to visualize spatiotempo-
ral data, listed at www.timeviz.net.

From the 115 visualization methods surveyed by Aigner et al. 2011, just 19 were

designed to display spatiotemporal data. From these 19, 4 (Flow Map, Flowstrates, Space-

time Path, Trajectory Wall) were designed to show movements of objects over time, which

is out of the scope of this work.

From the remaining 15, 4 (GeoTime (Kapler and Wright 2005), Space-time Cube

(Kraak and Ormeling 2003), Time Varying-Hierarchies on Maps (Hadlak et al. 2010),

Spatio-temporal event Visualization (Gatalsky et al. 2004)) make use of the space-time

cube concept (X-Y to represent latitude and longitude and Z to represent time). In partic-

ular, Spatio-temporal event Visualization (Gatalsky et al. 2004) was designed specifically

for displaying spatiotemporal events so that they are placed within the space-time cube
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and the event’s attributes can be encoded with visual variables like size, color, among

others (Bertin 1983). However, 3D visualizations commonly suffer from occlusion and

overplotting, making it difficult to grasp spatiotemporal patterns from their visual in-

spection.

A similar issue emerges from the 4 visualization methods (Data Vases (Thakur and

Rhyne 2009), Helix Icons (Tominski et al. 2005), Pencil Icons (Tominski et al. 2005),

Wakame (Forlines and Wittenburg 2010)) that use 3D diagrams over geographic regions

as well as from the 2 visualization methods (Icons on Map (Fuchs and Schumann 2004),

Value Flow Map (Andrienko and Andrienko 2004)) that use 2D diagrams to map the

corresponding data values varying over time. Notice that, in order to use these last 6 men-

tioned visualization methods in a context of spatiotemporal events, we have to aggregate

them by geographic regions. However, the diagrams can have a difficult readability if the

number of geographic regions under study is high, or if they are quite close to each other.

The Time-oriented Polygons (Shanbhag and Rheingans 2005) might have also read-

ability problems. This approach creates a partition of each polygon (2D) where each

partition maps a value regarding a time period (using the color). The readability prob-

lems will emerge whether one considers small polygons or/and many time-periods. From

the remaining results obtained, the most relevant for the analysis of spatiotemporal events

might be: the Great Wall of Space-time (Tominski and Schulz 2012), VIS-STAMP (Guo

et al. 2006) and Growth Ring Maps (Andrienko et al. 2011).

The Great Wall of Space-time (Tominski and Schulz 2012) creates a 3D wall based on

a topological path over a cartographic representation. This wall is used to display how

the data values associated to the geographic regions belonging to the path vary over time.

This approach is not suitable to analyze spatiotemporal events because they are spread

out in space and time. Therefore, we are not generally interested in a particular spatial

path to analyze the phenomenon.

VIS-STAMP (Guo et al. 2006) is not a visualization method but a visual analytical

approach that encompasses several visualization methods such as matrix plot, change

maps, parallel coordinates that will be discussed later on in Section 2.1.4.

Growth Ring Maps (Andrienko et al. 2011) is a technique for visualizing the spa-

tiotemporal distribution of events. Every spatiotemporal event is represented by one

pixel. Each location (for example the centroid of spatial clusters of events) is taken as

the center point for the computation of growth rings. The pixels (i.e., events) are placed

around this center point in an orbital manner resulting in the so called Growth Ring rep-

resentations. The pixels are sorted by the time at which the event occurred: the earlier an

event happened, the closer to the central point the pixel is. Although this approach can

be useful to provide a grasp on the spatiotemporal distribution of events, a clear under-

standing about when spatiotemporal hotspots occurred can be hard to achieve through

visual inspection, for example. Furthermore, there might be others patterns that are not

captured like changes in the structure of the spatial distribution of events throughout

time.
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As mentioned, the design of a visualization method that aims to combine the spatial

and temporal dimension of data is not trivial. Perhaps that’s why from 115 visualization

methods surveyed by Aigner et al. 2011, we only have 19 visualization methods for

spatiotemporal data. Their usage for spatiotemporal events was further discussed in this

work, and in short, they have some problems handling spatiotemporal events. Another

characteristic which is transversal to the visualization methods discussed is that they

encode data into visual representations at certain LoDs. In fact, from our perspective, the

visualizations should be used according to the LoD of the input data in spite of the issues

identified for using them. For instance, Spatiotemporal event Visualization (Gatalsky et

al. 2004) should be used when spatiotemporal events are provided at high LoDs (latitude

and longitude coordinates) while the Time-oriented Polygons (Shanbhag and Rheingans

2005) should be used when the events are aggregated by some administrative level (e.g.,

counties) and by year.

In general, a visualization method produces a single representation of data. In order

to make this representation effective, the visualization methods are designed taking into

account the analytical goal and sometimes the data (Aigner et al. 2011). However, the

analysis of spatiotemporal data frequently requires coordinated views in order to deal

with the spatial, temporal, and thematic aspects of data simultaneously (Dykes et al.

2005). This approach has become standard in the recent applications of visual analysis

because they directly support the expression of complex queries using simple interactions

(Dykes et al. 2005; Scherr 2008; Weaver 2010).

In the project carried out by Lahouari et al. 2014, a set of geovisualization applica-

tions that allows us to study spatiotemporal phenomena in space and time were assessed.

Such approaches were researched during a period of 6 months by 5 different people, inde-

pendently, without having a priori a criterion of the target audience or the phenomenon

or the technology implemented.

In total, 47 applications were studied and characterized based on ten criteria. Note

that, an application might hold more than one value for a particular criterion. The

first criterion considered was the types of spatial dynamics which the application was

developed for. The ones considered as well as the percentage of applications studied

for that type of spatial dynamic were: (i) spatiotemporal events - 25%; (ii) change in

space (e.g., land use, Urbanization) - 38%; (iii) change of shape (e.g., black tide, cities’

boundaries) - 6%; (iv) movements of individuals (e.g., daily trajectories of people) - 28%;

(v) flux movement between places (e.g., home - work) - 19%.

Among the applications studied, 25% were developed to analyze phenomena logged

as spatiotemporal events. From these, we left out from our next discussion the appli-

cations Marine Traffic, Quick Route and ReRouteMe as they are focused on the spatial

movement. All the others are shown in Table 2.1.

The second criterion considered was the goal of the application. The goals considered

are the simple presentation of data, the presentation of stories, the exploration and anal-

ysis, or the predictive analysis. From the 19% applications (the ones in Table 2.1), 44%
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Table 2.1: Some applications evaluated by the project developed in (Lahouari et al. 2014)

Application
Goal

Space
Representation

Time
Representation

Spatial
Granularity

Time
Granularity

Source

CartoVista Exploration Map Space Multiple Multiple

https:

//cartovista.com/

demos/CustomFlash/

CrimeAnalysisDemo/

CrimeAnalysisDemo.

html

CrimeViz Exploration Map
Space and
Time

Multiple Multiple (Roth et al. 2010)

Data Rose - Ring Maps Exploration Map Space Simple Multiple* (Zhao et al. 2008)

HerbariaViz Presentation Map Space Simple Multiple
https://www.geovista.

psu.edu/herbaria/v3/

index.html

How music travels Story Cartogram
Space and
Time

Multiple* Simple

http://www.thomson.co.

uk/blog/wp-content/

uploads/infographic/

interactive-music-map/

index.html

Mesure de la radioactivité
dans l’environnement

Presentation Map Attribute Simple Simple Not available

The Growth of
Newspapers Across
the U.S.

Presentation
and
Exploration

Map Space Simple Simple

http://web.stanford.

edu/group/ruralwest/

cgi-bin/drupal/

visualizations/us_

newspapers

The Photographer’s
Ephemeris

Presentation
and
Prediction

Map Space Simple Simple
http:

//photoephemeris.com/

Visualizing emancipation
Story and
Exploration

Map
Space, Time,
Attribute

Multiple Simple
http://dsl.richmond.

edu/emancipation/

https://cartovista.com/demos/CustomFlash/CrimeAnalysisDemo/CrimeAnalysisDemo.html
https://cartovista.com/demos/CustomFlash/CrimeAnalysisDemo/CrimeAnalysisDemo.html
https://cartovista.com/demos/CustomFlash/CrimeAnalysisDemo/CrimeAnalysisDemo.html
https://cartovista.com/demos/CustomFlash/CrimeAnalysisDemo/CrimeAnalysisDemo.html
https://cartovista.com/demos/CustomFlash/CrimeAnalysisDemo/CrimeAnalysisDemo.html
https://cartovista.com/demos/CustomFlash/CrimeAnalysisDemo/CrimeAnalysisDemo.html
https://www.geovista.psu.edu/herbaria/v3/index.html
https://www.geovista.psu.edu/herbaria/v3/index.html
https://www.geovista.psu.edu/herbaria/v3/index.html
http://www.thomson.co.uk/blog/wp-content/uploads/infographic/interactive-music-map/index.html
http://www.thomson.co.uk/blog/wp-content/uploads/infographic/interactive-music-map/index.html
http://www.thomson.co.uk/blog/wp-content/uploads/infographic/interactive-music-map/index.html
http://www.thomson.co.uk/blog/wp-content/uploads/infographic/interactive-music-map/index.html
http://www.thomson.co.uk/blog/wp-content/uploads/infographic/interactive-music-map/index.html
http://web.stanford.edu/group/ruralwest/cgi-bin/drupal/visualizations/us_newspapers
http://web.stanford.edu/group/ruralwest/cgi-bin/drupal/visualizations/us_newspapers
http://web.stanford.edu/group/ruralwest/cgi-bin/drupal/visualizations/us_newspapers
http://web.stanford.edu/group/ruralwest/cgi-bin/drupal/visualizations/us_newspapers
http://web.stanford.edu/group/ruralwest/cgi-bin/drupal/visualizations/us_newspapers
http://photoephemeris.com/
http://photoephemeris.com/
http://dsl.richmond.edu/emancipation/
http://dsl.richmond.edu/emancipation/


CHAPTER 2. BACKGROUND AND RELATED WORK

make simple presentations of data (i.e., visualization of the location of events in space

or/and in time) , 55% allow exploration of data, 11% make predictive analyses and 22%

build stories with data.

The representation of space (i.e., location) was also defined as a criterion. A detailed

discussion is not provided here as the majority of applications use maps to display the

location of events.

Another criterion assessed was how time is represented. In this case, three different

representations of time were considered: (i) through time as happens with animated

visualizations (e.g., one second animation represents a year of time); (ii) using space like

a line chart (e.g., 1 cm on a line chart represents a year time period); (iii) or as a data

attribute (e.g., coloring events according to their date). This criterion is similar to the

Visualization Mapping category discussed by Aigner et al. 2011. Most applications, 88%

to be precise, use space to represent time through charts (e.g., Line Chart, Circleview)

while 22% represent time as a data attribute and 33% use animation.

Another aspect evaluated was the ability of applications to view data in different

temporal LoDs. The value for this criterion can be simple (the data is viewed in a single

LoD and cannot be changed) or multiple (the data can be viewed in several temporal

LoDs, one at a time or simulaneously). 56% of applications follow a simple approach

while 44% follow a multiple approach. Similarly, in the case of space, 56% of applications

follow a simple approach while 44% change the spatial LoD of analysis.

When the value for the previous criteria is multiple, the application might view data at

multiple LoDs, one at a time, or simultaneously. In what concerns, only Data Rose - Rings
Maps allows multiple temporal granularities simultaneously, while, in space, multiple

spatial granularities are just supported by How music travels. Last but not least, none of

the applications support data view at multiple spatial and temporal granularities (i.e.,

spatiotemporal LoDs) as it’s aimed by this work.

The remaining criteria (Lahouari et al. 2014) are not detailed here as they do not have

enough relevance for this work.

The information that results from this project provides us with some evidence. On one

hand, the visualization methods discussed previously to display spatiotemporal data are

not being adopted on spatiotemporal events probably because of the problems discussed.

On the other hand, the applications allowing the analysis over spatiotemporal events are

performing separate analyses of the spatial and the temporal dimensions (see Table 2.1),

which are of limited value as pointed out in the beginning of the PhD Thesis. Therefore,

patterns relating space or/and time may be hidden, and not identified, in the data that

is usually displayed and analyzed. Furthermore, none of the approaches studied in this

project, concerning spatiotemporal events, allows to view data at multiple spatial or/and

temporal granularities, simultaneously, as it’s aimed by this work.
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2.1.3 Automated Approaches

Automated processing to extract knowledge from data can help users to handle the infor-

mation overload. Spatial and spatiotemporal data mining studies the process of discov-

ering interesting and unknown patterns that are potentially useful. Extracting patterns

from spatiotemporal datasets is more difficult than extracting patterns from traditional

alphanumeric data due to the complexity of spatiotemporal data (Shekhar et al. 2015).

Such complexity comes from several challenges, starting by the properties like depen-

dency and heterogeneity.

The dependency property can be explained through Tobler’s first law (Tobler 1970):

"everything is related to everything else but nearby things are more related than distant things"
(Tobler 1970). For example, people with similar characteristics tend to cluster together in

the same neighborhoods. Due to the spatial heterogeneity and temporal non-stationarity,

spatiotemporal data does not follow an identical distribution across the entire space and

over all time (Chawla et al. 2001; Miller and Han 2009). Instead, different geographical

regions and temporal periods may have distinct distributions. Ignoring these properties

may produce hypotheses or models that are inaccurate or inconsistent with the data set

(Yao 2003; Miller and Han 2009; Wang and Yuan 2014; Shekhar et al. 2015). Furthermore,

spatiotemporal datasets are embedded in continuous space and time, and thus many

classical data mining techniques assuming discrete data (e.g., transactions in association

rule mining) may not be effective (Shekhar et al. 2015). To handle such issues, spatial

and spatiotemporal data mining algorithms have been proposed.

Spatial data mining is concerned with finding patterns in spatial data, ignoring the

temporal dimension. The main output patterns are (Mennis and Guo 2009; Bogorny

and Shekhar 2010): spatial association, spatial co-location, spatial clustering and spatial

outlier. The spatial association rules represent a dependency relationship and take the

follow form X→ Y (c%, s%). Here, X and Y are two disjoint sets of items given a dataset,

c% is the confidence (meaning P (X |Y )) and s% is the support (meaning P (X ∪ Y )). The

spatial association rule is an extension of typical association rules that considers the

spatial properties and predicates in X and Y sets in addition to the attributes’ values

typically used. For instance, crimes occur frequently far from police stations. The spatial

co-location rules represent subsets of features frequently located together like certain

species of birds tend to use a certain type of trees as habitat. Spatial clustering is the

process of grouping a set of spatial objects or events into clusters in such a way that

objects or events in the same cluster have high similarity with each other, but are as

dissimilar as possible to objects or events located in other clusters. An applicability of

spatial clustering is to find hotspots of crime events, for instance. The spatial outliers

represent observations which appear to be inconsistent with their neighborhoods. For

instance, a store outperforms its neighbor competitors in sales numbers. Although spatial

patterns do not take into account the temporal component, tracking the evolution of

spatial patterns over time and detecting changes can be interesting.
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Shekhar et al. 2015 provide a survey about spatiotemporal pattern families. The main

families identified are spatiotemporal outliers, spatiotemporal coupling, spatiotemporal

partitioning and summarization, and spatiotemporal hotspots.

A spatiotemporal outlier is a spatially and temporally referenced object or event whose

non-spatiotemporal attribute values differ significantly from those of other objects in its

spatiotemporal neighborhood. For example, spatiotemporal outlier detection can be used

to detect the occurrence of unexpected events like crimes or traffic accidents. Spatiotem-

poral coupling patterns represent spatiotemporal objects or events which occur in close

geographic and temporal proximity. For example, analysis of crime datasets may reveal

frequent occurrence of misbehaviors and drunk driving after and near bar closings on

weekends. Spatiotemporal clustering is the process of grouping similar spatiotemporal

objects or events, and thus partitioning the underlying space and time. For example, par-

titioning and summarizing crime data, which is spatial and temporal in nature, helps law

enforcement agencies find trends of crimes and effectively deploy their police resources

(Chen et al. 2004; Malik et al. 2010). Spatiotemporal hotspots are regions jointly with cer-

tain time intervals where the number of objects or events is anomalously or unexpectedly

high. For example, in epidemiology finding disease hotspots allows officials to detect an

epidemic and allocate resources to limit its spread (Gabriel et al. 2013).

Several algorithms have been developed to compute spatial and spatiotemporal pat-

terns and a survey on them can be found in (Roddick and Spiliopoulou 1999; Miller and

Han 2009; Shekhar et al. 2015).

Often, the patterns have statistical expression. This way, spatial or spatiotemporal

statistics are proposing quantitative analysis about the presence or absence of such pat-

terns. The average nearest neighbor index (Ebdon 1985) (ANN) can give some hints about

the presence of spatial clustering. If ANN’s value is less than one, the pattern exhibits

clustering. Otherwise the trend is toward dispersion. Getis-Ord General G (Getis 1992)

measures how concentrated the high or low values are for a given study area. Positive

scores indicate that the spatial distribution of high values is spatially clustered and the

negative scores indicate that the spatial distribution of low values is spatially clustered.

Getis-Ord General G measure might also suggest spatial outliers (Getis 1992). Global

Moran’s I (Moran 1950) measures the spatial autocorrelation or dependency based on

feature locations and an associated attribute. When the spatial distribution of high values

and/or low values in the phenomena is more spatially clustered than would be expected

if underlying spatial processes were random, the Global Moran’s I value will be posi-

tive. The spatiotemporal statistics methods like Knox (Knox and Bartlett 1964), Mantel

(Mantel 1967) and the Jacquez k-nearest neighbor test (Jacquez 1996), measures the level

of spatiotemporal interaction embedded in a phenomenon. More recently, Gabriel et

al. 2013 proposed estimators to measure the spatiotemporal clustering/regularity in spa-

tiotemporal point processes (equivalent terminology for spatiotemporal events with point

as their spatial representation).

One challenge to mine spatiotemporal data results from the Modifiable area unit
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problem (MAUP) (Openshaw and Openshaw 1984) or multi-scale (i.e., multiple LoD)

effect since the results depend on a choice of appropriate spatial and temporal scales (i.e.,

LoDs) (Swedberg and Peuquet 2016). This means that patterns may be biased due to how

data is aggregated/summarized. Analyses across multiple LoDs can make the MAUP

identifiable or discarded sooner. For example, when a pattern is only visible in a specific

LoD it can be further validated. One might conclude that the pattern suffers from MAUP

and can be ignored or, if the phenomenon specifically operates there, it can be considered

valid. Therefore, we argue that the analysis across multiple LoDs can attenuate the MAUP.

2.1.4 Visual Analytics Applications

There are several approaches to make analyses over data that emerge either from the

academic or industry communities.

To the best of our knowledge, the more recent survey about commercial VA tools was

done by (Zhang et al. 2012). About ten commercial VA tools (Tableau, Spotfire, QlikView,

JMP (SAS), Jaspersoft, ADVIZOR, Solutions, Board, Centrifuge, Visual Analytics, and

Visual Mining) were assessed by Zhang et al. 2012 namely in terms of automatic data

analysis methods and visualization techniques implemented.

Regarding automatic data analysis methods, the authors divide the automated analy-

sis functions implemented into statistics, data modeling, and data projection. The first

category includes statistics functions for: (i) univariate analysis that operate on one di-

mensional data, for example, the calculation of the mean, minimum and maximum, and

standard deviation; (ii) bivariate analysis that reveals correlation of two variables, for

example, Pearson correlation coefficient; and (iii) multivariate analysis that models the

relations over multiple dimensions. From the systems studied, all provide some simple

statistics methods for univariate and bivariate analysis, but multivariate analysis is only

supported by QlikView, Spotfire, JMP and ADVIZOR.

The data modeling category aims to find patterns using various data mining algo-

rithms. The most commonly implemented algorithms include clustering algorithms, clas-

sification or network modeling. Among the systems studied, Spotfire, JMP, Centrifuge

implement partitioned based and hierarchical clustering. To the best of our knowledge,

the clustering algorithms are applied to non-spatial and non-temporal data.

The third category (data projection) describes dimension reduction techniques that

can be applied to transform high dimensional data into lower dimensional space. Such

transformation leverages the dimensionality problem by reducing the number of dimen-

sions prior to analysis or visualization while keeping the essence of the data intact. The

result is often used to generate 2D or 3D projections (typically scatter plots) of the data.

The commonly used dimension reduction techniques are Principle Component Analysis

(PCA), Multidimensional Scaling (MDS) and Self Organizing Map (SOM). In this PhD

Thesis, we aim to work with space and time together in order to understand spatiotempo-

ral patterns in datasets of spatiotemporal events. Dimensionality reduction is supported
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by QlikView, Spotfire, and JMP. The previous discussion was summarized by the authors

in Figure 2.3.

Figure 2.3: Summary about Automatic Analysis Methods supported by the commercial
VA tools (Zhang et al. 2012).

Concerning the visualization, the authors classify the visualization techniques by the

type of data, namely (i) numerical data; (ii) georelated data. The authors conclude that

the number of visualization techniques that are implemented by the surveyed VA systems

is small when compared to the number of techniques that are available from research

(Bostock et al. 2011). In other words, in general, the methods implemented for numerical

data are Histograms, Scatter plot, Heatmap, Paralell Coordinates, Scatterplot Matrix; and

for geo-related data there are just maps (see Table 2.4).

Figure 2.4: Summary about Visualization techniques supported by the commercial VA
tools (Zhang et al. 2012).

Last but not least, and although the authors have not discussed, these tools follow

an analysis approach based on a single LoD, which is chosen by users. Furthermore,

they are general purpose VA tools (Stewart et al. 2015) and they are not designed to

handle datasets of spatiotemporal events specifically. Therefore, spatial or spatiotemporal

patterns will be difficult to be identified using the commercial VA tools studied by Zhang

et al. 2012 as they just support separate analyses of the spatial and temporal dimension
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of data.

So far, we gave an overview of VA commercial tools, discussed the main visualization

techniques used for spatiotemporal data, and the main output patterns that are searched

in them. As we aim to an approach that enhances exploratory analysis of spatiotemporal

events, a detailed discussion about VA approaches found in the literature that analyses

spatiotemporal events based on a single LoD is provided below.

Guo et al. 2006 developed a visual analytics software package called, VIS-STAMP,

that couples computational, visual, and cartographic methods for exploring and under-

standing spatiotemporal and multivariate data. It can help analysts investigate complex

patterns across multivariate, spatial, and temporal dimensions via clustering, sorting,

and visualization.

The input data is a space-time-attribute cube as illustrated in Figure 2.5. Each cell in

this cube is defined by a specific spatial object (e.g., Texas), a specific time (e.g., year 2000),

and a specific variable (e.g., sales percentage for the energy industry). A time-attribute

slice (see Figure 2.5b) can be seen as a series of multivariate profiles (one for each year -

Figure 2.5c), or a set of time series (one for each variable - Figure 2.5d).

Figure 2.5: Illustration of the space-time-attribute cube(Guo et al. 2006).

An overview of the VIS-STAMP interface can be seen in Figure 2.6. The core of the

system lies on the self-organizing map (SOM) that is used for multivariate clustering,

sorting, and coloring. SOM takes a set of temporal series or multivariate profiles as input.

The clusters computed are displayed at bottom-right and the circle’ size is proportional

to the number of data items it contains. The parallel coordinates (PC) (bottom-left) are

used to display the clusters identified. If the SOM input is a set of temporal series, the

coordinates of PC will be the time’s values. In case the input is a set of multivariate

profiles, the coordinates of PC will be the attribute’s values. Accordingly, the matrix

view’s columns (top-left) represent attribute’s values and its rows stand for geographic

regions. The matrix view’s columns represent the time’s values. The map view follows

the change maps approach and shows choropleths, one for each time point or attribute

value, like in the matrix view. The color scheme is consistent across all views.

In Figure 2.6, the SOM was used over temporal series based on the space-time-

attribute cube displayed in Figure 2.5 with real data. Using this approach, one can
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Figure 2.6: An overview of the VIS-STAMP interface (Guo et al. 2006).

study the variation of temporal patterns across geography and multiple categories (e.g.,

industry types). The colors represent similar temporal trends as displayed by the PC. For

example, red and dark red colors represent a most recent growth in sales displaying low

sales for most years but rapid rises in 2003 concerning the nonprimary high-tech (NON)

industry as can be seen in the matrix view.

Although this approach allows the search for spatiotemporal patterns, this can only

be done for one spatiotemporal LoD at a time. In the example mentioned, the underlying

spatiotemporal LoD was State, Year. Besides, if one intends to use this approach to look

for spatiotemporal patterns in events, we need, beforehand, to aggregate them for coarser

spatial and temporal LoDs. This actually happened in a later work they proposed (Guo

and Wu 2013). Even so, if those LoDs are not coarser at all, we might end up with

too many geographic regions and time periods, which will probably cause readability

problems in the matrix and spatial view, and therefore, the analysis will turn out to be

difficult.

Maciejewski et al. 2010 propose an approach to identify spatiotemporal hotspots of
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events like crime events or syndromic ones. An overview of its interface is displayed in

Figure 2.7. The main viewing area is the map, and the three charts on the right that allow

users to view a variety of data sources simultaneously for a quick comparison of trends

across varying hospitals/precincts or data aggregated over spatial regions. These views

are synchronized. Additionally, both the map and the time series are linked to the time

slider at the left side of the screen. This allows users to view the spatial changes in the

data as they scroll across time. Furthermore, temporal controls are also employed on

the left side denoted as "aggregate" and "increment". The aggregate function allows the

user to show all data over a period of α days. The increment function allows the user

to step through the data by increments of 1, 2, 3, ... days. On the map view, one can

choose to look at the events’ spatial locations, the events’ spatial locations grouped based

on nearest-neighbors, the events aggregated by some administrative level or to use the

geospatial heatmap proposed as illustrated in Figure 2.7. When the heatmap is used, the

percentage of events over the total events occurred on the period of time chosen in the

time slider is displayed.

The authors developed an analytical approach focused on finding spatiotemporal

hotspots. Furthermore, in order to understand in what spatial and temporal LoDs the

spatiotemporal hotspots emerge, or how they are better perceived, the users might have

to try several levels of aggregation (i.e., LoDs). Using the map, events can be displayed

at different LoDs like, for instance, the actual spatial locations, aggregated based on

their neighbors, or even, aggregated by administrative levels. On the other hand, the

data might be aggregated using different ranges of days (e.g., one, two, three) according

to the “aggregate” control in the interface. Bearing this in mind, finding the suitable

spatiotemporal LoD(s) to explore the data can be challenging.

As previously presented, Lins et al. 2013 propose a compressed hierarchical data

structure in order to hold huge amounts of spatiotemporal events in memory. In addi-

tion, the authors implemented some web-based applications to explore real datasets of

spatiotemporal events. They developed an application to perform analysis over crimes

occurred in the City of Chicago as shown in Figure 2.8. Other applications can be tested

in their website4.

In this case, the interface is composed by a map showing the location of events. The

spatial LoD at which the events are displayed changes according to the zoom level. How-

ever, the same behavior was not registered when the time series was analyzed. Besides

that, the interface contains a line chart with the number of events aggregated by day. This

approach does not focus on a particular analytical goal but these are addressed using

the descriptive statistic COUNT. Another characteristic is the fact that this approach is

independent from the phenomenon. Furthermore, and although they have spatiotempo-

ral events available at different spatial and temporal LoDs, their analyses are conducted

using one spatial or temporal LoD at a time, separately.

4http://www.nanocubes.net/
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Figure 2.7: An overview of the VA system proposed by (Maciejewski et al. 2010).

Figure 2.8: An overview of an application developed by (Lins et al. 2013).
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Ferreira et al. 2013 develop a visual environment to explore taxi trips, called TaxiVis.
Analyzing it, the input data are events of taxi pickups and taxi drop-offs that happened

in New York City. An overview of the tool’s interface is displayed in Figure 2.9a. Users

can specify queries over all the dimensions of the data and explore the attributes asso-

ciated with the taxi trips (e.g., What are the geographic regions with higher demand for

taxis?). Besides standard analytics queries, TaxiVis supports origin-destination queries

that enable the study of mobility across the city (e.g., What is the average trip time from

Midtown to the airports during weekdays?). This kind of queries that aim to understand

movement patterns are not the goal of this PhD thesis. Another important feature of the

system is the ability to compare spatiotemporal slices through multiple coordinated views.

Users can interactively compose and refine queries changing the queries parameters like

the attribute to be analyzed, the spatial LoD, the temporal LoD of aggregation, among

others. For example, the spatial LoD might be based on neighborhood, administrative

level, or even, user-defined geographic region whereas the temporal LoD can be the hour,

the week, the month, the year.

Figure 2.9: An overview of the VA system proposed by (Ferreira et al. 2013).

This approach supports exploratory analysis about taxi pickups and taxi drop-offs

without any particular analytical task in mind. They are addressed using descriptive

statistics that result from the separate analysis of the spatial and the temporal dimension
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of data. For example, Figure 2.9b, shows how the number of pickups vary over the first

week of May 2011 in four different geographic regions. Furthermore, the spatiotemporal

LoD at which the data is explored is visually driven by the user according to his analytical

goals.

Another VA approach developed was VAiRoma (Cho et al. 2016). Although this

approach was not developed particularly to analyze spatiotemporal events, the type of

data handled has some similarities. From the entire collection of English Wikipedia

articles, the authors extract the ones related to the Roman History based on key words

like "Rome","Roma", and "Roman". Afterwards, they preprocess the articles in order to

place them in space and time based on their content. In the end, they manage to have a

dataset about the Roman history where facts associated to articles are referenced in space

and time.

An overview of the VAiRoma’s interface is given in Figure 2.10. The interface is

composed of three main views: geographic, timeline and topic. The timeline view (Figure

2.10A) presents temporal topical trends of the Wikipedia collection over 4000 years (2000

BC to 2010 AD). Each point in the timeline is representing the number of articles related

to a certain topic(s). The map (Figure 2.10B) shows the location regarding the facts

described in the articles selected via the time period, or by topic which can be done using

the topic view (Figure 2.10C).

Figure 2.10: An overview of the VAiRoma system proposed by (Cho et al. 2016).

VAiRoma focuses on constructing a narrative of the whole Roman history from an-

cient times, through the Empire, to modern times, and not on extracting spatiotemporal

patterns that might have happened.

Some of the VA approaches discussed support separate analyses of space and time

and these analyses are performed at one spatiotemporal LoD at a time like the works
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(Ferreira et al. 2013; Lins et al. 2013; Cho et al. 2016) discussed in detail here. More

similar approaches were found (Kisilevich et al. 2010; Malik et al. 2010; MacEachren

et al. 2011; Andrienko et al. 2013).

Others approaches support analyses that look for spatiotemporal patterns like Guo

et al. 2006 or Maciejewski et al. 2010. However, these kinds of approaches follow

analyses based on a single LoD, and in some cases, they are developed for the detection

and exploration of a particular spatiotemporal pattern in a particular domain application

(Chae et al. 2012; Thom et al. 2012; Wang et al. 2013). As opposed to that, we aim to

give an overview of the presence of absence of spatiotemporal patterns at different LoDs

simultaneously without focusing in a particular application domain but just considering

phenomena logged as spatiotemporal events.

2.2 Granular Knowledge Representation

Granular computing has emerged as a paradigm of knowledge representation and pro-

cessing, where granules are basic ingredients of information. Granular computing is an

umbrella term to cover any theories, methodologies, techniques, and tools that make use

of granules in complex problem solving (Yao et al. 2013). In granular computing, there

are several formal platforms in which information granules are defined and processed

wherein some approaches are defined based on set theory and others on top of Fuzzy

sets, Shadowed sets and Rough sets (Bargiela and Pedrycz 2012). This work focused on

approaches defined based on set theory, once we aim to model data at different LoDs, and

not to model aspects of uncertainty or imprecision in the concepts. Since the granularities

definitions found in the literature were developed for specific data domains, we end up

proposing a Theory of Granularities (ToG) applicable to any data domain (space, time,

and other attributes). Furthermore, it gave us the foundations to support an automated

approach for data generalization for coarser LoDs.

The granularities definitions proposed in the literature are focused mainly in temporal

or spatial domains. A temporal granularity, proposed by Bettini et al. 2000, is a sequence

of temporal granules, each one composed by a set of time instants. For example, December

2016 can be a temporal granule. Consider a time domain T as a set of totally ordered

time instants. A temporal granularity Gt is a mapping from an index set (e.g., the natural

numbers) to subsets of the time domain. Suppose that i, k and j are elements of an index

set. A temporal granularity needs to satisfy the following conditions:

• if i < j and gt(i) and gt(j) are non-empty, then each element in gt(i) is less than all

the elements in gt(j);

• if i < k < j and gt(i) and gt(j) are non-empty, then gt(k) is non-empty. Each non-

empty gt(i) in the above definition is called a temporal granule.
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These conditions impose the following: temporal granules of the same temporal gran-

ularity cannot overlap and non-empty temporal granules must preserve the order given

by the index set. Moreover, we cannot have an element (from the index set) mapped to

the empty set between any two elements mapped to non-empty subsets. Accordingly,

Weeks, Y ears are examples of temporal granularities. Notice that, in the logic community,

an independent line of research on representation and reasoning with multiple granu-

larities investigated classical and non-classical logic extensions based on multi-layered

time domains. More details about this approach can be found in (Euzenat and Montanari

2005).

A spatial granularity Gs is a set of spatial granules, each one being a portion of a

spatial domain. Camossi et al. 2006 define spatial granularity as a mapping from an

index set to subsets of the spatial domain (assumed as 2-dimensional) such that: if i , j,

and gs(i) and gs(j) are non-empty then gs(i) and gs(j) are disjoint. No order is required

among the spatial granules, but two spatial granules of the same granularity cannot

overlap. Examples of spatial granularities are: Countries, Cities, among others. The

spatial granularity definition is further extended by Belussi et al. 2009 in order to also

represent the relations between spatial granules (e.g., direction-based relations, distance-

based relations).

The proposals regarding spatial granularities discussed so far are focused on vector

data. As opposed, Pozzani and Zimányi 2012 propose a framework focused on raster

data. The authors define a spatial granularity σ as a total function from two-dimensional

coordinates in Z2 to a label set L such that σ : Z2 → L. This way, given a cell c ∈ Z2,

σ (c) represents the label associated to c. Unlike the previous approaches, a granule

corresponds to the sets of all cells sharing the same label.

Either on vector-based granularities or raster-based granularities there are proposals to

handle the evolution of spatial granularities. Under the terminology used in the literature,

sometimes these correspond to spatiotemporal granularities (Belussi et al. 2009; Pozzani

and Zimányi 2012), which from our point of view is not the most accurate term to be used.

We would reserve the term spatiotemporal granularity to mention granularities where

each granule refers to a portion of a R3 (e.g, if we assume the space as R2 and time as an

additional dimension). In any case, the evolution of spatial granularities is necessary to

handle changes of spatial granularities over time. For example, a country’s administrative

division may change over time. The evolution of granularities is crucial to handle such

scenarios.

Belussi et al. 2009 propose a definition for handling the evolution of spatial granular-

ities. It has two components < tG,E >. tG is a temporal granularity and E is a mapping

that to each time moment t, bound by a lower and a upper bound, associates the spatial

granularity valid on it. Regarding the work by Pozzani and Zimányi 2012, it follows

the previous approach applied to their spatial granularity definition. Another approach

found in the literature introduces the concept of spatiotemporal granularity (Wang and

Liu 2004).
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Zadeh considers granular computing as a basis for computing with words (Zadeh

1998). Granularities should give us "words" (i.e., granules) to make statements about

phenomena. The granule concept should be applicable to any domain of reference and

not necessarily just to the spatial or temporal domain.

Keet 2008 shares this mindset and developed a formal, domain-independent theory

of granularity that can be used for computational reasoning. This theory was developed

to model phenomena at different LoDs and applied it to biological sciences. A domain of

reference can be granulated with a certain criterion following a type of granularity that

defines a granular perspective, which in turn contains granular levels. In her compre-

hensive theory, there is a proposal for a taxonomy of types of granularity. This taxonomy

makes explicit both the ways of granulation, and how entities are organized within a

granular level. For example, one type of granularity is denoted by nrG: levels of non-
scale-dependent granularity are ordered according to one type of relation in a perspective (e.g.,
structural: part of, spatially: contained in). For example, administrative divisions, the gran-

ulation criterion, can be used to define a granular perspective containing granular levels

of type nrG (considering the spatial relation contained in). This granular perspective can

be composed by three granular levels, for instance: Countries, States, Municipalities. In this

case, the granular level and the spatial granularity proposed in (Camossi et al. 2006) have

similar interpretations. Note that, the concept of granular perspective make explicit the

characteristics of hierarchies of granularities, something that’s left implicit throughout

the literature on granularity (Keet 2008). However, granular levels are static in the sense

that they don’t handle a temporal evolution. Furthermore, Keet’s theory of granularities

has no full support for dealing with the complexity of temporal granularities (Keet 2008)

which is crucial for modeling spatiotemporal phenomena.

Bravo and Rodríguez 2014 also make a generalization of the concept of granularity for

any domain through the concept of domain schema. However, this work does not provide

a comprehensive theory of granularities like Keet 2008 but rather their work take another

direction that will be discussed in Section 2.3.3.

Granular computing shows itself useful to model phenomena at different LoDs be-

cause granularities can be related through relationships allowing one to compare and

relate granules belonging to different granularities (Bettini et al. 2000; Camossi et al.

2006). Two commonly used relationships between granularities (spatial or temporal) are

given. A granularity G groups into H if each granule of H is equal to the union of a set

of granules of G. For example, Days groups into Weeks, but Weeks do not group into

Months. A granularity G is finer than H if each granule of G is contained in one granule

of H . For instance, P ortugal′s parishes is finer than P ortugal′s districts but Rivers is not

finer than Countries. Some relationships are only applicable to some kind of granulari-

ties. For instance, in temporal granularities, we found groups periodically into or shift

equivalent relationships (Bettini et al. 2000). More details about granularities’ relation-

ships can be found in (Bettini et al. 2000; Belussi et al. 2009; Pozzani and Zimányi 2012).

Additionally, we can perform operations over granularities. In general, the operations are
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proposed to automate the creation of new granularities. More details about this subject

can be found in (Bettini et al. 2000; Keet 2008; Belussi et al. 2009).

Granules, granularities and the relationships between them are fundamental concepts

to understand granular computing approaches that model phenomena at different LoDs.

Despite the several proposals for granularities, the concept is being narrowed to a division

of a domain in a set of granules disjoint from each other. However, to the best of our

knowledge, we do not find on the literature a theory of granularity that enables us to

define granularities over any domain, to reason about granules with known relations of

the domain of reference and to handle the evolution of a granularity defined over any

domain.

2.3 Modeling Phenomena at Multiple Levels of Detail

To model spatiotemporal phenomena at multiple LoDs, spatiotemporal models have been

investigated, proposed by different researchers in different research areas like multirep-

resentation, multiresolution, granular computing, and compressed data structures. A

discussion of them is provided.

2.3.1 Multirepresentation Approaches

Multirepresentation provides different points of view from a spatiotemporal phenomenon

allowing the observation of the same geographical space and/or interval of time, from

different perspectives. For example, we can have a representation of a country in terms

of unemployment and another representation of the same country in terms of its average

temperatures, for a certain time period. In general, the approaches denoted by multirep-

resentation are based on extensions of the ER (Entity-Relationship) and UML (Unified

Modelling Language) models in order to incorporate spatial and temporal features in the

database modeling with different LoDs (Parent et al. 2009). Several data models, each one

with specific concepts, have been proposed in the literature. In Parent et al. 2009 a survey

about multirepresentation modeling is given in which three requirements are presented

that should be verified in a multirepresentation approach. Firstly, a model should allow

one to characterize the same object using different sets of attributes, or/and with different

domain values. Secondly, a model should allow mapping one object to several objects or

two different sets of objects. This is particularly useful when we change the spatial LoD,

where objects may disappear and others may be grouped. Thirdly, a model should enable

multiple representations of relationships. For instance, two regions might be modeled

as spatially adjacent at a lower scale but at a more precise scale the regions are just near

each other. According to Parent et al. 2009, MADS (Modeling Application Data with

Spatiotemporal features) (Parent et al. 2006) is the only model which verifies the three

requirements. It supports multiple spatiotemporal representations of a phenomenon

mainly through perceptions. More particularly, we can assign perception stamps to any
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element of the schema including objects, object attributes, and relationships. According

to the perception stamp, we will have access to different spatial representations of objects

or relationships, to different domain values of attributes, or even to different attributes.

Among the main drawbacks of multirepresentation is the fact that different LoDs,

required by different applications, or the same application at different stages, can vary

(Zhou et al. 2004). Bearing this in mind, the task of modeling a real-world phenomenon

for which several spatial and/or temporal LoDs are needed can easily be very challenging.

There are no pre-defined operations that take data from one spatial and/or temporal

level to another. Everything is defined by the user at the instances level. Despite these

drawbacks, having several pre-computed representations when dealing with numerous

spatiotemporal events can be advantageous.

2.3.2 Multiresolution Approaches

Unlike the multirepresentation approaches, the multiresolution is essentially focused on

the spatial component of the data. Plus, it derives the proper LoD on demand (Zhou et al.

2004). Data are stored at the highest level of resolution (or detail) and are dynamically

generalized to lower LoDs, using known and pre-defined generalization operations. The

generalization of spatial data is a non-trivial task and involves object simplification (e.g.,

at less precise resolutions, a building may be defined using less vertexes than originally),

dimensionality reduction (e.g., a building can be represented by a polygon at a precise

resolution, and by a point at a less precise resolution) and existence (e.g., eventually to

represent that building is not relevant anymore). This sequence of operations was coined

by Laurini 2014 as Generalization-reduction-disappearance process. More details about

generalization operators can be found in (Weibel and Dutton 1999).

In an early work, Stell and Worboys 1998 define resolution or granularity (for the

authors these are synonyms) as the level of discernibility between elements of a phe-

nomenon that is being represented by the dataset.

Based on the resolution definition, Stell and Worboys 1998 define a stratified map

space which consists of a set of maps representing the same spatial extent at different

resolutions related to form a resolution lattice through general conversion operators

(generalize and lift operators). Each map holds the same semantic and spatial granularity

which corresponds to a database state. Maps are grouped by map spaces, i.e., sets of maps

at the same resolution, describing the set of all possible databases states that are instances

of some fixed schema. Through this work, the authors do not aim at a formalization of

the complex process of cartographic generalization, but a framework as basis reasoning

on generalized maps.

Brahim et al. 2015 propose a mathematical framework for the generalization of re-

gions and ribbons (in vector space). The authors specify rules in order to specify when a

ribbon turns into a line, an area becomes a point, and when the disappearance of a spatial

object occurs. Furthermore, topological relations between ribbons are formalized as well
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as between ribbons and regions. Then, the authors specify transformation rules that stip-

ulate when topological relations between ribbons or between ribbons and regions need

to be changed. On the contrary, in this work, a change in a topological relation between

temporal or spatial features resulting from the generalization is not an imposition but

rather a consequence of their individual generalization.

In (Zhou et al. 2004), a multiresolution approach to generalize polygonal data is

proposed. The spatial generalization happens in a post-query process based on a scaless

data structure. As to the time required to perform such operation, it is not clear. The au-

thors make the following statement: "We found that the overhead of simplify-while-retrieve
approach based on the scaleless data structure is significant but not very large". The gener-

alization at run-time is important when such process depends on the data achieved at

that moment which in turn may vary according to the user interaction like filtering over

semantic attributes, spatial filters, and so on. The time required to perform the general-

ization process can be an issue. In an interactive application like VA approaches, the fast

response time is crucial for the user and when dealing with numerous spatiotemporal

events this is an open issue (Committee et al. 2013).

Moreover, to the best of our knowledge, the multiresolution approaches do not pro-

vide generalization operators that take into account the temporal component. Finally,

they are more focused on the map visualization (and the corresponding spatial gener-

alization operators) and less on the computation of data at different LoDs (Benz et al.

2004).

2.3.3 Granular Computing and Others Approaches

Bittner and Smith 2003 have developed a formal theory of granular partitions domain in-

dependent that uses "granules" (i.e., cells) to model abstract real-world entities at different

granularities. The theory of granular partitions is bipartite: (i) the theory A characterizes

the partitions as system of cells that are partially ordered by the subcell relation. As the

partitions are cognitive devices that are directed towards reality, ii) the theory B defines

their projective relation to the reality. Such theory brings the term object as any portion

of the reality like an individual, a spatial region, a class of individuals. Then, an object

can be recognized by some cell of a partition. A limitation of this theory is the lack of

automatic methods to express a reality from one LoD to a coarser one.

A granular computing approach devised for spatiotemporal data was proposed by

Camossi et al. 2006. The authors propose to represent spatiotemporal information (vec-

tor approach) in object-oriented database management systems (DBMSs) extending the

ODMG standard. They define two new parametric data types. Spatial data types are

defined through the Spatial < Gs, τ > data type, where Gs is a spatial granularity and τ

being one of the ODMG types typically used to define conventional attributes like literal

types (e.g., integer, float, etc.) or geometric types (like points, lines and polygons). Tem-

poral or spatiotemporal data types are defined using the T emporal < Gt ,γ > data type
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where Gt is a temporal granularity and γ can be any data type mentioned (including a

spatial data type).

To Spatial < Gs, τ > and T emporal < Gt ,γ > data types, coarse and refinement func-

tions can be assigned allowing to hold data at different granularities (i.e., several LoDs).

Coarse functions convert data from a granularity Gα to a granularity Gβ such that Gα is

finer than Gβ while refinement functions perform the opposite. We can have coarse or re-

finement functions applicable to spatial geometrical attributes or spatial quantitative and

temporal attributes (Camossi et al. 2006). For example, coarse or refinement functions

applied to spatial geometrical attributes can force some granules to modify their position

and extent, be deleted, be split, and be merged. Some coarse functions that can be applied

on numerical types are: min, max, average. Using this approach, the user specifies, for

each class attribute, what conversion functions can be used (which are already defined

by Camossi et al. 2006).

The Spatial < Gs, τ > data type indexes information of the type τ to spatial granules.

Furthermore, the T emporal < Gt ,Spatial < Gs, τ >> data type indexes the information

of the type τ already indexed by spatial granules to temporal ones. Note that, when

we define a temporal data type, the temporal granules are specifying the valid time of

the information indexed to them. Another important aspect of this approach is that the

indexed information will not be granules of some granularity but values of some type τ

(belonging to some domain). As a result, in some scenarios, we cannot relate information

at different LoDs. Consider the following class attributes: (i) Spatial < GCountries, int >
storing information about the exact population number in each country; (ii) Spatial <
GCountries,String > also storing information about the population number but with less

precision so that the possible values are: (i) less than one million (ii) one million or more

and less than fifteen millions; (iii) fifteen or more millions. Although both variables refer

to the same information, we cannot relate them by stating that the former is finer than the

latter. This kind of reasoning is also important to relate spatiotemporal data at different

LoDs.

Bravo and Rodríguez 2014 propose a multi-granular database model and a query lan-

guage in order to query data using different granularities. This was done bearing in mind

that events may be stored at different LoDs with respect to time (i.e., day, month, season,

year) and location (i.e., city, country, zone), and despite differences in data granularity, the

objective was to retrieve data at a specific granularity. Relying on the concept of domain

schema, the multi-granular database model and a query language address heterogeneity

of granularities in data. This way, data can be collected and stored at different granulari-

ties, and at query time, the data are derived at a particular granularity, keeping the results

consistent. To move data from finer granularities to coarser ones, (Bravo and Rodríguez

2014) follow the same generalization process regardless of wether this generalization of

data is described by spatial attributes or temporal attributes, for instance. Furthermore,

in their model, each attribute is described by a granule. This will rise an issue that will

be discussed into detail in Section 4.1.
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More recently, a compressed hierarchical data structure was proposed in order to

hold spatiotemporal events at multiple LoDs Lins et al. 2013. They focus on provid-

ing real-time exploratory visualization for huge amounts of spatiotemporal events. The

research of Lins et al. 2013 is aligned with the work here proposed as they have avail-

able spatiotemporal events at different LoDs. However, each LoD is computed purely

based on aggregation operators (e.g., count, max, min) and the generalization-reduction-

disappearance process is not considered.

In short, these approaches are modeling spatiotemporal data at different LoDs by

indexing and aggregating spatiotemporal data at different LoDs. We aim to go a step

further and represent spatiotemporal phenomena logged as spatiotemporal events at

different LoDs, including the generalization-reduction-disappearance process so that

each representation of phenomenon at a particular LoD is computed following a bottom-

up automated approach.

2.4 Manifold LoDs Approaches

The scale (or LoD) of analysis can greatly affect results (e.g., Modifiable Areal Unit Prob-

lem - MAUP). This issue has been acknowledged a long time ago (Openshaw and Open-

shaw 1984). However, with spatiotemporal events in mind, analytical approaches have

been mainly developed to support analyses based on a single LoD. Thus, the MAUP be-

comes a problem, once unsuitable LoDs can hide patterns and conceal the true underlying

nature of a dataset.

The LoD of analysis can affect results and this can be seen as an opportunity to develop

approaches that work at different LoDs. VA approaches working across LoDs are still in

its infancy despite the fact that they have been gaining more attention in recent years.

We found some ad-hoc approaches working on multiple LoDs concerning spatiotemporal

data but bearing a specific analytical goal.

Camossi et al. 2008 propose a spatiotemporal clustering technique applicable to

different temporal and spatial LoDs in order to improve a clustering algorithm efficiency.

The appropriate temporal and spatial LoD depends on a trade-off between the mining

efficiency and the maximum detail desired, which is an input parameter. The choice of

the temporal and spatial LoD is done iteratively through the LoDs available until the best

trade-off is found.

Malizia and Mack 2012 enhanced the Jacquez k nearest neighbor test in order to

identify the spatial and temporal LoDs at which spatiotemporal interaction takes place.

ArcGIS is currently one of the most widely used commercial GIS software for working

with maps and geographic information. It has an Incremental Spatial Autocorrelation
tool which applies the Global Moran’s I for a series of distances (i.e., different LoDs).

Significant peak values suggest the spatial LoDs where the clustering is most pronounced,

and therefore, the spatial LoDs that are more appropriate for investigating hotspots.
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Watson 2015 developed a visualization method which displays n events across multi-

ple temporal LoDs within a single image. Time maps are built as follows. Imagine each

event as a dot along a time axis. Then, the time differences between consecutive events

(in time) are computed. The time map is a scatter plot, where the (x, y) coordinates are

specified by each neighboring pair of time delays. Every point drawn on a time map

corresponds to an event within the dataset. In Figure 2.11α, two sequences of events

are displayed and their corresponding time maps. In sequence A, the events are evenly

spaced. In the corresponding time map, all of the points are exactly on top of each other.

Sequence B is similar to sequence A but the timing of one event (the red) was changed.

To simplify the interpretation of time maps, the author provided a heuristic diagram that

is divided into four quadrants (see 2.11β).

Figure 2.11: Illustration of the Time Maps visualization and their heuristic interpretation
Watson 2015.

Roughly speaking, events in the lower-left and upper-right quadrants are regularly

spaced in time between the events directly before and after them. The events in the

lower left occur in rapid succession while at the upper-right they happen at a slower rate.

Events in the upper-left quickly follow their preceding event, and a longer time elapses

until the next event. The lower-right quadrant is similar to "speeding up" since a long

delay is followed by an accelerated pair of events.

The authors use their approach on the 3.200 most recent tweets written by Barack-

Obama (likely president staff). The tweets occurred from October 2013 to April 2015. A

heated time map was produced that can be seen in Figure 2.12. Two main patterns are

easily recognized at different temporal LoDs. During major events like the 2015 State of

the Union Address, a tweet is written every few minutes. On other days, the tweet rate

is about one per hour. This kind of insights in several LoDs from events are the object of

this work. However, this approach is just dealing with the temporal dimension of events.

Sips et al. 2012 propose a Visual Analytics approach called Pinus, aiming at the

detection of patterns at multiple temporal LoDs in numerical time series, specifically
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Figure 2.12: A heated time map for tweets written by @BarackObama (Watson 2015).

from environmental sciences. To accomplish that, statistical measures are computed for

all possible time LoDs (i.e., scales) and starting positions, namely, mean, variance, and

discrete entropy were implemented.

Figure 2.13: An overview of the Pinus View prototype proposed by (Sips et al. 2012).

An overview of the prototype developed is given in Figure 2.13. The Pinus view is the

starting point for detecting patterns (see Figure 2.13A). This particular case is showing

the variation of the entropy for many time scales and time steps so that whites map zero

entropy while dark greens map maximum entropy. Users can select a temporal LoD

directly in the Pinus view as illustrated as B in Figure 2.13A. Panel C (right) shows the

result of the query, i.e., Panel C1 shows the original data points of the time series. Panel

C2 shows the entropy values at 10k year temporal LoD. Notice that, the data displayed in
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Figure 2.13 was used to gain insights about the glacial climate record data derived from

an ice core from Dronning Maud Land, Antarctica that were presented in Section 1.1.

This approach makes no assumption about the temporal LoD and the temporal pat-

terns. It combines statistic measures and the pattern recognition abilities of the user to

support effective detection of temporal patterns at different temporal LoDs. We aim to

bring this mindset for the analysis of spatiotemporal events at several spatiotemporal

LoDs.

Goodwin et al. 2016 propose a framework for analyzing multiple variables across

spatial LoDs and geographical locations. Based on it, they developed a suite of novel

interactive visualization methods to identify interdependencies in multivariate data cou-

pled with a series of correlation matrix views. An overview of the interface is given in

Figure 2.14.

Figure 2.14: An overview of the Goodwin et al. 2016 approach.

The overview panel allows all variables to be ranked by four global measures: theme

(variable category), skewness (as an indication of distribution), variance of correlation (as

an indication of how correlation varies across all variables) and Moran’s I (to establish

geographical dependencies).

The comparison panel is an adjustable correlation matrix. Figure 2.14 is filled with

the scale mosaic matrix proposed by the authors. Rows and columns represent variables

ordered according to the overview panel. Each cell is multicolored (based on a partitioned

square) in order to represent the correlation of a pair of variables at different spatial LoDs.

As the partition is closer to the center, the finer the spatial LoD is (e.g, administrative

levels – state, county, district, census level). The detail panel shows details concerning

45



CHAPTER 2. BACKGROUND AND RELATED WORK

the spatial LoD chosen in the bottom-left visualization. It might contain maps showing

the geographical distribution of the individual variables or pairwise local correlation, as

well as a scatterplot presenting the local correlation.

In the example shown in Figure 2.14, the variables at study are the percentage of

population aged 45-64 and the percentage of population aged 65+. These variables reveal

that positive correlation decreases as long as we consider lower spatial LoDs.

This approach does not focus on a particular phenomenon and was devised to look

for correlations on multiple variables in multiple spatial LoDs and geographic regions.

Robinson et al. 2016 developed a visual analytics approach, called STempo, to sup-

port the discovery of patterns found in spatiotemporal events. STempo was designed to

detect and analyze significant co-occurrences of real-world events. The dataset used was

carefully prepared and extracted from internet news feeds. Each event corresponds to

a single news event that contains information about its type (e.g., Political, Diplomatic),

the latitude and longitude coordinates, the date, among other information. The events

collected take place in Syria.

STempo includes several coordinated views as can be seen in Figure 2.15. STempo

leverages T-pattern (Magnusson 2000), a method for identifying sequences of significantly

co-occurring events. The sequences revealed by T-pattern analysis (i.e., the co-occurring

Figure 2.15: An overview of the STempo (Robinson et al. 2016).

event types next to one another over time) are shown in Figure 2.15a ordered by their

statistical significance. They are shown in a simplified way with colored blocks to repre-

sent each of the nine high-level event categories that are displayed in Figure 2.15b which

in turn are ordered by the frequency of occurrence for each category. STempo also has a

timeline tool (Figure 2.15c) that displays the number of events and allows users to focus

on a particular time interval. A tag cloud (Figure 2.15d) shows the key words used in the
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titles of articles from the dataset at study. An interactive map shows events located on a

custom-designed terrain basemap using colored concentric rings to represent associated

higher-level event categories (Figure 2.15e).

This approach was developed to make T-pattern analysis over spatiotemporal events

regarding news taking place in Syria. This is done for all the events and, at this mo-

ment, temporal or spatial filters cannot be applied as a way of changing the input data

of the T-pattern analysis. Furthermore, this approach is making a separate analysis of

the temporal and spatial dimension of events as the input for the T-pattern algorithm

corresponds to records containing the timestamp and a set of event types that occurred in

it. Finally, this approach looks for temporal patterns and not for spatiotemporal patterns,

because the sequences identified are not assigned to specific geographic regions, for in-

stance. Nevertheless, this approach computes temporal patterns in multiple temporal

LoDs because each sequence identified is anchored to a specific temporal LoD.

The visual analytics approaches discussed so far explore time following a linear model.

However, periodicity is underlying in all societies. Examples of periodicity can be sea-

sonal changes in the weather, Ramadan, our monotonous daily tasks, among others. How-

ever, different calendars (e.g. Islamic, Gregorian), different cultural backgrounds, and

other variables encumber the analytical ability to uncover and understand human activity

at a given time within a specified region. In order to address the periodicity and the calen-

dar heterogeneity, Swedberg and Peuquet 2016 propose a visual analytics web application

developed to help users in the detection and analysis of calendar related periodicity in

spatiotemporal event data sets via exploratory user interaction.

An overview of the PerSE’s interface is given in Figure 2.16. The main views of

the interface are the map (Figure 2.16B), the attribute (Figure 2.16C), the time-wheel

(inspired in the CircleView) (Figure 2.16D), the timeline (Figure 2.16E) and the table

(Figure 2.16F). These views are coordinated - the different views are displaying the same

data but from different perspectives. Furthermore, an interaction in a particular view like

choosing a period of time has an effect in the others views. Finally, the metric displayed

is the events frequency.

The map can be divided into a maximum of six geographic regions, and for each one,

there is a time-wheel. In Figure 2.16, the time-wheels use the Gregorian Calendar but the

calendar can be changed for the Islamic calendar, for instance.

This work allows for the analysis at multiple spatial LoDs and temporal LoDs despite

the fact that the number of the spatial LoDs that we can analyze, simultaneously, are lim-

ited to two (raw data and aggregated by the user-defined geographic regions). The authors

illustrate their approach using a subset of the Nigerian dataset (number of events=4,854)

taken from the ACLED (Armed Conflict Location and Event Data Project). Examples of

patterns detected by Swedberg and Peuquet 2016 are:

• A day-of-week pattern only evident within northern, central, and western Nigeria. The
pattern suggests that Sunday through Tuesday have a higher frequency of violence.
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Figure 2.16: An overview of the PerSE prototype proposed by (Swedberg and Peuquet
2016).

• A month-of-year pattern in the Gregorian calendar within the northeastern Nigeria. The
pattern suggests that January, February, and March contain less frequent violent events.

• A month-of-year pattern in the Islamic calendar within northeastern Nigeria. The pattern
suggests that Boko Haram is more active around the months of Ramadan, Shawwal, and
Muharram.

Although the mentioned patterns are interesting, they are obtained by working with

space and time separately using only the descriptive statistic COUNT. As pointed out

in the beginning of this PhD Thesis, much information might become visible when one

works with the spatial and temporal dimensions together.

To the best of our knowledge, there are no approaches that work across several spatial

and temporal LoDs, working with space and time together, and therefore, looking for spa-

tiotemporal patterns at different spatiotemporal LoDs. Furthermore, the VA approaches

discussed do not have any theoretical foundation that anchors the analysis across LoDs.

The approaches rely on clever visual designs that show data at different LoDs. However,

from our perspective, a theoretical foundation that anchors the analysis across LoDs can

be important for having phenomena representations for different LoDs, and then, use

better suited visualization methods to display them.
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Approaches working across several LoDs are needed and, as shown, they are starting

to be developed. This work seeks for an approach that follows the VA Mantra without

focusing on a particular analytical task/pattern, which can be applicable in the context

of spatiotemporal events.
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Theory of Granularities

Humans are constantly using granularities in unconscious ways, in order to make state-

ments about phenomena. Those granularities have an underlying domain of reference. In

most cases, granularities are just a way to create a domain of discourse simpler than their

domains of reference. This can be observed when we use several levels of administrative

divisions to make it easier to refer a to particular country area; it can be observed when

we refer to time as days, or months; it can be perceived when we assign the age of a person

always rounded to units; and these are just a few examples. Here, we denote a domain

of reference of a granularity as D = (DS,RS) where the domain set DS corresponds to a

set of elements and RS is a set of relations defined over DS. A domain set can be discrete,

dense, continuous or n-dimensional. A granularity is formally defined as follows.

Definition 3.1 (Granularity). Let ISbe an index set; D = (DS,RS) be a domain; 2DS the

power set of the DS; and GS be a subset of 2DS apart from the empty set, GS ⊆ 2DS\{∅}
such that all elements of GS are disjoint from each other. A granularity G is a bijective

mapping from GS to the index set IS:

G : GS→IS (3.1)

A granularity G defines a division of a domain in a set of granules. A granule gind
corresponds to a pair (g, ind) where g ∈ GS and ind ∈IS. The extent of the granule gind
is denoted by E(gind) which is g; the index value of the granule gind is denoted by I(gind)

which corresponds to ind. The set of extents of granules is denoted by GrS(G). The union

of elements belonging to GrS(G) defines the extent of a granularity Ext(G).

Let’s consider the white area within the ellipse displayed in Figure 3.1 as our domain

to be granulated. In this domain, an extent of a granule is represented by a pink area and

the corresponding index value is a letter over the pink area. This way, g1 is an example of

a granule. The granules g1, g2, . . . , g7 define a granularity over the white area.
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Figure 3.1: Illustration of the granularity concept.

Unlike the majority of the proposals that can be found in the literature, we propose a

mapping from the granules to an index set rather the reverse (see Section 2.2). Using a

mapping from the index set to granules can lead to too many values from the index set

mapped to the empty set. Using this granularity definition, we only need to define the

set of extents of granules and their corresponding mapping to the index set.

There are constraints concerning the mapping between the set of granules GS and the

index set IS. Through a bijective mapping, we are imposing the following constraint:

every element of GS is mapped to exactly one element of IS. Consequently, different

granules cannot share an index value, and one granule cannot be associated to more than

one index value.

A granularity defines a set of granules that can be used to refer to a particular domain

with a certain level of abstraction. Granules might represent familiar concepts for us

(as humans) or not, i.e., they are just a portion of the granulated domain. Through the

granularity definition proposed, it is possible to define a granularity over any domain

including the ones proposed in the literature (see Section 2.2). This is important to model

spatiotemporal events at different LoDs later on as they are described through different

domains of reference like space domain, time domain, among others.

Let’s consider events about forest fires in Portugal1 such that for each incidence the

location, time and its cause is described. These attributes have different domains of

reference and will be used to illustrate the concept of granularity.

A possible domain of reference for time is the domain of real numbers with total

orderD1 = (R,<). The data about forest fires are provided based on a granularityMinutes

where each granule represents a minute. The exact minute at which the fire starts can

1Data provider: http://www.icnf.pt/portal/florestas/dfci/inc/estat-sgif
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be irrelevant. One may want to analyze the hour at which the forest fires have happened.

Thus, the granularity Hours over the domain D1 where each granule represents an hour

can be defined. However, the hour may be too detailed to get an insight about the time

of day that most forest fires begun. Thus, we can consider the granularity DaysSubUnits

with granules representing the several periods of each day: night, morning, heat’s peak,

and afternoon. Additionally, it can be interesting to analyze in what days the forest

fires happened. The granularity Days should be defined where each granule represents

a day, illustrated in Figure 3.2. Finally, the appropriate granularity depends on the

phenomenon and the analytical goal. These examples of granularities correspond to

temporal granularities proposed by Bettini et al. 2000.

Figure 3.2: Example of a granularity defined over D1.

A possible domain of reference to describe the Earth’s surface can be the two-

dimensional coordinates with fourteen decimal cases D2 = (R2,RS), with a set of relations

RS irrelevant for the following examples. The data about forest fires are provided based

on the domain D2. An analyst may want to identify what parishes in Portugal present

a larger burnt area. In this case, it is necessary to define the granularity P arishes where

each granule refers to a Portuguese parish. Moreover, an analyst might be interested to

know in what of Portugal’s districts more forest fires occur. For this scenario, let’s assume

that we need the granularity Districts where each granule corresponds to a district of

Portugal (see Figure 3.3). This granularity is defined over D2. Also, the identification of

protected areas in which there is more burnt area can be desirable. In this case, we need

the granularity P rotectedAreas where each granule refers to a protected area in Portu-

gal. Again, the appropriate granularity depends on the phenomena and the analytical

goal. The granularities P arishes, Counties and P rotectedAreas correspond to the spatial

granularities proposed by Camossi et al. 2006.

Through the granularity definition proposed, we can also define granularities over

domains unrelated with time domains or space domains. One of the attributes describing

a forest fire incident is the forest fire’s cause. The domain of reference of this attribute is

discrete and contains a long list of possible causes, namely stubble burnings, electrical

power, mental illness, and so on. The LoD underlying this domain may be too detailed

if an analyst is just interested in discerning the places where there are more forest fires

caused by accident from the places where the occurrence of forest fires intentionally

caused by humans is usual. In this case, a granularity Causes composed by three granules

should be defined. One that encompasses unintentionally and indirectly human causes
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Figure 3.3: Example of a granularity defined over D2.

(causesuse of f ire), another that embraces accidental causes (causesaccident) and another one

that covers intentional human causes (causesvoluntary). This granularity is illustrated in

Figure 3.4 so that on the left side the domain of the forest fire’s cause the attribute is shown

whereas on the right side the granularity Cause is displayed. This kind of granularity is

only supported by Keet’s theory (Keet 2008).

Figure 3.4: Example of a granularity defined over the cause attribute provided by the
data provider.

The Normalized Difference Vegetation Index (NDVI) is produced by the Moderate

Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite2. This

index is a measurement about vegetation on Earth. The raster data are provided every 16

days at 250 meter spatial resolution. To each cell the NDVI value represents the entire

period (16 days) and the corresponding area. Index values ranging from 0.4 to 0.9 mean

lands covered by vegetation while lower values (0 to 0.4) mean lands where there is little

or no vegetation.

The data is provided based on a temporal granularity where each granule refers to

a 16 days time period. This granularity may be too detailed if a user wants to monitor

2https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD13A2_M_NDVI
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and investigate shifts in plant growth patterns that occur in response to climate changes.

Thus, the granularity Y ear where each granule refers to a period of a year can be sufficient

to analyze such changes.

On the other hand, the data is provided based on a "raster" spatial granularity, i.e.,

all granules are areas of 250 meters by 250 meters. This spatial granularity can be too

detailed if a user wants to analyse shifts in plant growth patterns for the entire Earth

surface. For such a scenario, the granularity Raster(10km2) where each granule refers to

an area of 10 km2 may be sufficient. These granularities are similar to the ones proposed

by Pozzani and Zimányi 2012.

The granules of a granularity can be related to each other through relationships. We

introduce the possibility to annotate a granularity in order to define relations between

granules of a granularity. An annotation over a granularity G corresponds to a binary

relation defined on the set of granules.

A granularity annotation can be useful in any granularity defined over any domain.

Recall the granularity Days, where each granule refers to a period of a day. This gran-

ularity can be annotated with the relationship next working day. Now, consider the

granularity Countries where each granule refers to a particular country. This granularity

can be annotated in order to specify what countries hold privileged trade relations, al-

liances or conflicts between them; relations of exporter/importer of oil, natural gas, gold,

and other materials.

3.1 Reasoning over Granules

3.1.1 Relations between Granules

There are known relationships in the domains that we would like to preserve or trans-

pose to the granularities. For example, Bettini et al. 2000 are interested in temporal

granularities where the granules are totally ordered, which is related with the total order

underlying the time domain. To guarantee that, Bettini et al. 2000 introduce a set of

constraints in the temporal granularity definition as presented in Section 2.2.

Likewise, and regardless of the domain, we may be interested to bring relations de-

fined in the original domain to the granules. We propose four ways to transpose a relation,

defined in the domain of a granularity, for two granules of such granularity. Therefore,

we introduce four relations that can be defined between granules of a granularity. The

relationships proposed are: (i) complete; (ii) partial; (iii) weak; (iv) and, existential. These

relationships are induced from the relations held by the elements of the domain of a

granularity.

Given a granularity G defined over a domain D = (DS,RS), a relation R defined over

DS such that R ∈ RS, and gi and gj denotes two granules belonging to G. The formal

definitions of the relationships are given.

55



CHAPTER 3. THEORY OF GRANULARITIES

Definition 3.2 (Complete Relationship). A complete relationship gi RC gj is defined as

follows.

gi R
C gj ⇔∀xi ∈ E(gi),∀xj ∈ E(gj ) : xi R xj (3.2)

If two granules gi and gj are completely related then all elements of gi must be related

with all elements of gj through the relation R.

Definition 3.3 (Partial Relationship). A partial relationship gi RP gj is defined as follows.

gi R
P gj ⇔∃xi ∈ E(gi),∀xj ∈ E(gj ) : xiRxj ∧∃xj ∈ E(gj ),∀xi ∈ E(gi) : xiRxj (3.3)

In case of two granules gi and gj are partially related then there is at least one element in

gi related with all elements of gj through the relation R and similarly, there is at least one

element in gj where all elements of gi are related with gj through the relation R.

Definition 3.4 (Weak Relationship). A weak relationship gi RW gj is defined as follows.

gi R
W gj ⇔∃xi ∈ E(gi),∀xj ∈ E(gj ) : xiRxj ∨∃xj ∈ E(gj ),∀xi ∈ E(gi) : xiRxj (3.4)

When two granules gi and gj are weakly related then there is at least one element in gi
related with all the elements of gj through the relation R or, there is at least one element

in gj where all elements of gi are related with gj through the relation R.

Definition 3.5 (Existential Relationship). An existential relationship gi RE gj is defined

as follows.

gi R
E gj ⇔∃xi ∈ E(gi),∃xj ∈ E(gj ) : xi R xj (3.5)

Finally, for two granules gi and gj to be existentially related, at least one element of each

granule is related via the relation R.

(a) ga RC gb (b) ga RP gb (c) ga RW gb (d) ga RE gb

Figure 3.5: Illustration of the induced relations

In order to illustrate the four relationships proposed, consider a granularity S defined

over the domain D3 = (R2,north) such that a coordinate (xi , yi) is at north of a coordinate

(xj , yj) if and only if yi > yj . In Figure 3.5, there are four scenarios of two granules ga
and gb belonging to S available. In Figure 3.5a, ga is completely north of the granule gb
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(ga northC gb) since all elements of ga are north of all elements of gb. Looking at Figure

3.5b, ga is partially north of the granule gb (ga northP gb). In this case, there are some

elements of ga north of all elements of gb and, there are some elements of gb for which

all elements of ga are north. Regarding the Figure 3.5c, ga is weakly north of the granule

gb (ga northW gb) because there are just some elements of ga north of all elements of gb.

Finally, considering the Figure 3.5d, ga is existentially north of the granule gb (ga northE

gb) since there are some elements of ga north of some elements of gb.

The induced relations are successive relaxations, i.e., gi RC gj ⇒ gi R
P gj ⇒ gi R

W gj ⇒
gi R

E gj . Therefore, given a granularity G, the induced relations transpose how strong a

relation R, defined over the DS, is verified between two granules.

Furthermore, it is important to know what properties of relations defined over the

DS are preserved in the induced relations. For that, we consider five properties that a

relation R can hold: (i) symmetric; (ii) transitive; (iii) reflexive; (iv) antisymmetric; (v)

antireflexive.

Table 3.1: The induced properties of relations based on the properties of relations in the
domain.

gi R
C gj gi R

P gj gi R
W gj gi R

E gj

Symmetric
√ √ √ √

Transitive
√ √

inconclusive inconclusive
Reflexive inconclusive inconclusive inconclusive

√

Antisymmetric
√ √

inconclusive inconclusive
Antireflexive

√ √
inconclusive inconclusive

It can be proved that if the relation R is symmetric then any induced relation is also

symmetric. Furthermore, if the relation R is transitive then we only can state that the

complete and partial relations are also transitive. For the other relations, nothing can be

stated. Regarding the property reflexivity, only the existential relation is in any case also

reflexive. Finally, if the relation R is antisymmetric or antireflexive then the complete

and partial relations are also antisymmetric or antireflexive, respectively. The summary

of these results is displayed on Table 3.1.

To achieve the results displayed in Table 3.1, formal demonstrations were conducted

in the natural deduction system. Here, we discuss into more detail the transitive property

and all the others are available in Appendix A. A relation R of a domain D is transitive

whenever verifies the following property: ∀x∀y∀z((x R y ∧ y R z)→ x R z). If an element

x is related to an element y through the relation R and y is related to an element z via

relation R then x and z are also related through the relation R. Consider, the previous

defined domain D3. The north relation is transitive because if a coordinate c1 is north of

a coordinate c2 and the coordinate c2 is north of a coordinate c3 then the coordinate c1 is

north of the coordinate c3.

According to the formal proof provided in Fitch-style calculus, available in Figure 3.6,
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given a domain D and a relation R, if the relation R is transitive on the domain D then we

can state that the complete relationship RC , between granules belonging to a granularity

defined over D, is also transitive. In addition to gi and gj , consider also a granule gk
belonging to S. We take as premises a transitive relation R, gi RC gk and gk RC gj and we

want to proof gi RC gj . By taking arbitrarily three elements (line 4th) and using universal

instantiation, we can infer that an element of gi is related with an element of gk : a R b

(line 5th); and an element of gk is related with an element of gj : b R c (line 6th). Since the

relation R is transitive we can infer a R c (line 9th). Through universal introduction, we

can conclude that any element of a granule gi is related to gj via the relation R (line 10th).

Figure 3.6: A transitive relation induces transitive complete relationships.

A particular example can be observed in Figure 3.7a. The granules gu , gv , gw are

granules of a granularity defined over D3 = (R2,north). The granule gu is completely

north of the granule gv (gu northC gv) and the granule gv is completely north of the

granule gw (gv northC gw) then the granule gu is completely north of the granule gw
(gu northC gw).

(a) (b) (c) (d)

Figure 3.7: Four scenarios for granules belonging to S.

A similar statement can be made regarding the partial relationship RP . In short, a

transitive relation R induces a transitive partial relationship RP as shown in the proof

available in Figure 3.8. We take as premises a transitive relation R, gi RP gk and gk RP gj
and we want to proof gi RP gj . Based on the 2nd and 3rd premises, we can infer that

there is at least one element in gi related to all elements of gk through the relation R (line
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4th); and we can infer that there is at least one element in gk related with all elements

of gj via the relation R (line 5th). It can be concluded that there is at least one element

in gi related with all elements of gj through the relation R (from 6th line to 17th). This

corresponds to the left-hand side of the conjunction that defines the partial relationship

gi R
P gj . Then, a similar reasoning was performed looking at the right-hand side of the

conjunction (from 18th line to 31th). Through the conjunction introduction of the two

intermediate conclusions (line 32th) we got gi RP gj .

Figure 3.8: A transitive relation induces transitive partial relationships..
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In the scenario provided by the Figure 3.7b, the granule gu is partially north of

the granule gv (gu northP gv) and the granule gv is partially north of the granule

gw (gv northP gw). Therefore, the granule gu is partially north of the granule gw
(gu northP gw).

Regarding the weak relationship, similar conclusions cannot be made. Given transi-

tive relation R on the domainD, there are circumstances where the weak relationship does

not hold the transitivity. One example is provided in Figure 3.7c. The granule gu is weakly

north of the granule gv (gu northW gv), once there is at least one element in gu north of

all elements of gv . The granule gv is weakly north of the granule gw (gv northW gw), once

there is at least one element in gw where all elements in gv are north. Still, the granule gu
is not weakly north of gw.

Finally, the existential relation may also not be transitive in spite of a transitive rela-

tion R on the domain D. An example of that is displayed in Figure 3.7d. Although the

granule gu is existentially north of gv and the granule gv is existentially north of gw, the

granules gu and gw are not existentially related through the relation north of.

The induced relations can be used to specify what kind of properties we intend for cer-

tain granularities. For example, the temporal granularities defined by Bettini et al. 2000

are, under our theory of granularities (ToG), granularities defined over the time domain

where their granules are related by complete relationships (<C), where the relation (<) is

induced from the total order verified by the elements of the time domain.

3.1.2 Distance Functions between Granules

Data Mining activity plays an important role on the extraction of patterns that are hidden

in very large data sets Committee et al. 2013. Distance/dissimilarity functions are

frequently embedded into data mining approaches like clustering, classification, and

nearest neighbours search. Instead of having those approaches working on the original

domains, it can be advantageous if they work based on the granularities defined for such

domains Camossi et al. 2008.

Suppose that there is a granularity G defined over a domain D = (DS,RS), and a real-

value distance function d, which quantifies the distance between elements belonging to

DS such that d :DS ×DS→ R. Additionally, gi and gj denote two granules belonging to

G.

The distances between granules can be defined based on the distances of their ele-

ments in DS. Here, we consider the following induced distances:

Inner Distance : dl(gi , gj ) =minxi∈E(gi )minxj∈E(gj )d(xi ,xj )

Outer Distance : dl(gi , gj ) =maxxi∈E(gi )maxxj∈E(gj )d(xi ,xj )

Left Distance : dl(gi , gj ) =maxxi∈E(gi )minxj∈E(gj )d(xi ,xj )

Right Distance :dl(gi , gj ) =minxi∈E(gi )maxxj∈E(gj )d(xi ,xj )
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Figure 3.9: Set of induced distances.

The inner distance corresponds to the minimum distance between two granules while

the outer distance is the maximum distance. Moreover, the left distance corresponds to

the Hausdorff distance from gi to gj while the right distance corresponds to the Hausdorff
distance (Atallah 1983) from gj to gi . The distances are illustrated in Figure 3.9.

Besides the induced distances introduced, several other distances can be defined like

the distance between the granules centers of gravity, the minimum between the inner and

the outer distance, and so on.

3.2 Relationships between Granularities

Remember that the relationships between granularities allow us to relate different granu-

larities, useful to hold spatiotemporal data at different LoDs.

Two granularities G and H can be related in different manners. In the first place,

there are two relations that come naturally from the set theory. Firstly, G and H are equal

(G = H) if and only if they have precisely the same elements. Note that, a granule is

equal to another one if the extents of granules are equal as well as their index values.

Furthermore, G is a subset of H (G ⊆ H) if and only if for each granule of G there is an

equal granule in H .

Others relations can be verified between granularities. In this section, we revisit

the majority of the relationships introduced in the literature according to the proposed

granularity definition (Bettini et al. 2000; Belussi et al. 2009; Pozzani and Zimányi 2012).

For the sake of simplification, in the following formal definitions, we refer to a granule of

a granularity by using the lower case letter of the corresponding letter of the granularity.

For instance, each granule’s extent of H can be stated as each h’s extent.

Two granularities G and H can be related as follows. To complement the discussion,

a diagram that illustrates each relation is provided in Figure A.6.

G is covered by H (G v̂H) : the extent of G is contained in the extent of H , formally

defined as: Ext(G) ⊆ Ext(H).
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G groups into H (G E H) : each h’s extent is equal to the union of a set of g’s extent.

The formal definition is: ∀h ∈ H,∃G′ ⊆ G : ∪g ′∈G′E(g ′) = E(h). However, there may

be g’s extents that are not contained by any h’s extent. From this definition, it can

be concluded that G is covered by H : G v̂H .

G finer than H (G � H) : each g’s extent is contained in one h’s extent. The formal

definition is: ∀g ∈ G,∃h ∈ H : E(g) ⊆ E(h). There may be h’s extents that do not

contain some g’s extents. From this definition, it can be concluded that G is covered

by H : G v̂H .

G partitions H (G ⊕ H) : each g’s extent is contained in one h’s extent and each h’s extent

is equal to the union of a set of g’s extent. The formal definition is: ∀h ∈ H,∃G′ ⊆
G : ∪g ′∈G′E(g ′) = E(h)∧∀g ∈ G,∃h ∈ H : E(g) ⊆ E(h). From this definition, it can be

taken that G’s extent is equal to the H’s extent: Ext(G) = Ext(H), i.e., G v̂ H . Also,

G � H) and G E H).

G is a sub-granularity H (G v H) :for each g’s extent there is an equal h’s extent. The

formal definition is ∀g ∈ G,∃h ∈H : E(g) = E(h). There may be h’s extents inexistent

in G. From this definition, it can be concluded that G is covered by H :G v̂H . This

relation is different from G is a subset of H , once we are relating just the extents of

granules and not the granules themselves.

The relationships groups into, finer than, sub-granularity, partitions, and the covered

(equivalent to image covered in the literature) are relationships proposed and defined

accordingly to the granularities definitions (Bettini et al. 2000; Belussi et al. 2009) (see

Section 2.2). In this work, we introduce a new relation between granularities labeled as

equivalent and formalized as follows.

G is equivalent to H (G ≡ H) : for each g’s extent there is an equal h’s extent and for

each h’s extent there is an equal g’s extent. The formal definition is: ∀g ∈ G,∃h ∈
H : E(g) = E(h)∧∀h ∈ H,∃g ∈ G : E(h) = E(G). This relation is different from G is

equal to H , once we are relating just the extents of granules and not the granules

themselves. From this definition, it can be seen that G’s extent is equal to the H’s

extent: Ext(G) = Ext(H), i.e., G v̂H . Also, G v H) and H v G).

Through the equivalent relationship, we intend a relationship capable of relating

different granularities containing granules with equal extent. For example, we can have

two spatial granularities where each granule corresponds to a country. One granularity

can be indexing the granules using native names and the other English names.

Let’s take a look at the relationships between granularities defined in the context of

our examples. Regarding temporal granularities, the granularity Minutes partitions the

granularity Hours as well as the granularity Hours partitions the granularity Days. The

granularityDaysSubUnits has no relationship with the previous mentioned granularities
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Figure 3.10: Illustration of relationships between granularities.

apart from being possibly covered by the granularities Hours and Minutes. Additionally,

the granularity WorkDays where each granule refers to a business day could have been

considered. This last granularity is a sub-granularity of the granularityDays. Concerning

the spatial granularities, the granularity P arishes partitions the granularity Districts.

However, the granularity P rotectedAreas has no relation with the previous ones. Another

spatial granularity that could have been considered is the granularity Cities where each

granule corresponds to a city’s urban area. This granularity is finer than Districts, for

instance.

The granularities are instruments to create different "lexicons" to be used to describe

realities, but we mainly intend describe spatiotemporal phenomena. Roughly, granulari-

ties that share the whole or part of their extension allow us to describe the same reality

using different "words". Consequently, when different granularities are related by the

relations partitions, finer-than, and groups into, it is possible to describe the same reality

with different LoDs.

3.3 Open Issues

Like humans are constantly using granularities in unconscious ways, they also build

granularities based on another ones. For example, in Portugal, a district is composed by

a set of counties, and a county is a set of parishes. Thus, the granularity Districts could

have been defined over the granularity Counties which in turn could have been defined

over the granularity P arishes, instead of defining such granularities over R2.

However, granularities defined over others granularities are not being considered by

63



CHAPTER 3. THEORY OF GRANULARITIES

the ToG. When a granularity G is defined based on another one, a granule of G will

be composed by a set of granules. For example, let’s consider the granularity Districts

created based on P arishes, and the granularity P arishes defined over R2. In this case, the

extent of a particular district will be a set of granules from P arishes, and the extent of

particular county will be a “portion” of R2. Thus, the extents of the granules in Districts

and P arishes are not comparable. This raises an issue because the relationships defined

previously like the finer-than are no longer applicable, for instance.

On the other hand, granularities may change over time. In an evolution of granularity

new granules can emerge, others disappear, and others be split. Even so, some granules

keep unchanged. Likely, the evolution of granularities leads to granularities that are

different from the ones that are valid in preceding temporal granules. For example,

consider the granularity P arishes where each granule refers to a parish in Portugal. This

Portugal administrative level was recently reorganized. In 2013, some parishes were

extinct, others were merged, and others remained unchanged. In order to represent the

changes that occurred in P arishes, there is a need for the concept of evolution.

Some proposals for the evolution of spatial granularities were found in the literature

(Belussi et al. 2009; Pozzani and Zimányi 2012). However, the concept of evolution of a

granularity applicable to any domain was not found.

Future work is directed on both issues. On one hand, the definition of granularities

over others granularities sharing the same domain of reference should be handled. On

the other hand, work on the concept of evolution of granularity can also be done.

3.4 Related Works and their Limitations

This Chapter presents a theory of granularities (ToG) that supports granularities defined

over any domain covering the definitions proposed in the literature (Bettini et al. 2000;

Wang and Liu 2004; Camossi et al. 2006; Belussi et al. 2009; Pozzani and Zimányi 2012),

which focus on a particular domain (temporal or/and spatial) apart from Keet’s theory

(Keet 2008).

Furthermore, the ToG proposed introduces four induced relations in order to trans-

pose the relations defined in the domains of reference for granules belonging to granu-

larities. None of the works discussed in the literature are capable of such. Some of those

relations (that are defined in the original domain) hold properties like symmetric, tran-

sitive, reflexive, antisymmetric, and antireflexive. We investigated the circumstances in

which the induced relations inherit the properties of the relation defined in the domain of

reference. In this study, formal demonstrations were conducted in the natural deduction

system.

The ability to transpose the relations defined in the domains for the granules can play

a crucial role for the analytical contexts. The establishment of qualitative relations among

what happens in space and time is a common practice. For example, we may be interested

in whether two events took place at the same time or whether one event took place before
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the other, or whether two events overlapped in space (see Section 2.1.1). But if we have de-

scribed phenomena using granules without having the induced relations, we would have

lost the ability to establish those kinds of relationships. This happens because temporal

qualitative (Vilain 1982; Allen 1983) relations like before, overlap, during or spatial topo-

logical relations (Egenhofer and Sharma 1993; Schneider and Behr 2006) like contains,

disjoint are defined over the original domains (time domain and spatial domain, corre-

spondingly). This issue has been ignored by the literature apart from (Bettini et al. 2000)

but it lacks generality as they just consider temporal granularities, and the corresponding

qualitative temporal reasoning, which is not enough for spatiotemporal phenomena. As

opposed to that, in this PhD thesis, we allow relationships to be transposed to granules

in any domain of reference.

Another two features of the ToG were devised considering the analytical contexts.

One can annotate a granularity with the induced relations as well as with other relations

that are important for users’ analyses, something that is not considered in the literature.

Furthermore, in Data Mining techniques, the usage of distance functions is common. In

order to account for this need, we also proposed four induced distance functions. Another

subject that has been ignored by the literature.

Therefore, the ToG proposed not only permits to describe a phenomenon but also to

reason about it at different LoDs.
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4
Granularities-based Model

Using the ToG proposed one can represent data, using granularities defined in different

domains of reference. This is particularly useful for representing spatiotemporal events

at different LoDs as they encompass features with different domains of reference.

Let’s consider the dataset of spatiotemporal events about storms occurred in the USA1

to be our running example of this Chapter. For each storm (i.e., event), we consider the

following information: Space, T ime, V ictims, T ype where Space describes the spatial

location of the storm (latitude and longitude coordinates), T ime specifies the time when

the storm occurred (in minutes), V ictims describes the number of injured individuals

and T ype describes the type of storm.

Storms events can be described using different granularities instead of the ones em-

bedded in the domains of reference given by the data provider. To do that, let’s define the

following granularities based on the ToG proposed.

The granularity CoordsSeven is defined over the two-dimensional space where each

granule represents a coordinate with seven decimal cases. The granularity Raster(0.5km2)

is defined over the two-dimensional space where each granule represents a square area

of size 0.5km2; similarly, consider the granularity Raster(2km2). Also, consider the gran-

ularities Counties and States. The granularity Minutes, Hours, Days are defined over

the time domain where each granule represents a minute, an hour, a day, respectively;

the granularity NaturalNumbers is defined over N where each granule corresponds to an

element of the corresponding domain. Finally, StormT ypes is defined over the domain of

type of storms that are considered by the data provider (i.e., tornado, hail, thunderstorm,

among others) and each granule corresponds to an element of the corresponding domain.

Some examples of storm events’ description using the different granularities are given:

"a large hail occurred on July 8th, 2016 (Days granularity) at Tennessee (States granularity)

1Data available in: https://www.ncdc.noaa.gov/stormevents/details.jsp
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with zero victims to report"; "a tornado occurred on May 9th, 2015 15h pm (Hours Granular-
ity) that moved through the Eastland county (Counties granularity) resulting two victims" or

"a lightning hit Florida in August 12th, 2015 leading to the hospitalization of twenty people.".
For the sake of simplification, the granularities used regarding the non-spatial and tem-

poral attributes of the events were not highlighted. Plus, the granules in each statement

were underlined.

The mentioned examples aim to show that one can express individually spatiotempo-

ral events based on the ToG proposed. But not even that is entirely true. In fact, granules

are being compliant with abstract real-world entities like a state, a county, an hour, and

so on. But there is no theoretical basis framing those granules into a description that

something occurred in a phenomenon.

A granular computing approach is proposed to model spatiotemporal phenomena

at multiple LoDs labeled as the granularities-based model. This approach models a

phenomenon through statements rather than just using granules to model abstract real-

world entities. Statements are made at some LoD, a concept formally defined which is

a key contribution of this work. Based on it, the granularities-based model follows an

automated approach to generalize a phenomenon from one LoD to a coarser one. Before

we dive into formalisms, let’s illustrate the key ideas of the granularities-based model.

A granularities-based model is composed by statements where each one describes

something that occurred in a phenomenon. Roughly speaking, granules are used in the

statements’ arguments. For example, we can model a thunderstorm event through the

statement: storm(Oakland, 03/01/2015 18h, 1, thunderstorm) where the granules used

come from the following granularities Counties, Hours, Natural Numbers, Storm T ypes.

The thunderstorm event did not occur in the entire extent of Oakland and did not

occur from 18h until 18:59. Instead, the thunderstorm occurred in some part of the

Oakland county at some point between 18h and 18:59. This form granules’ interpretation

is called the weak interpretation of granules, as opposed to the strong interpretation

(Bravo and Rodríguez 2014). In the latter, the thunderstorm event would have been

interpreted as been occurred in the entire extent of Oakland, and would have happened

from 18h until 18:59. Therefore, a key property of the granularities-based model is the

weak interpretation of granules (Bravo and Rodríguez 2014).

Furthermore, statements can be generalized to coarser LoDs automatically. This oc-

curs, and again roughly speaking, based on the relationship coarsening that occurs be-

tween granules: a granule g1 is a coarsening of another granule g2 if the extent of g1

contains the extent of g2, i.e., E(g2) ⊆ E(g1). For example, the previous thunderstorm

event can be generalized to storm(Calif ornia, 03/01/2015, 1, thunderstorm) where the

granules used come from the following granularities States, Days, Natural Numbers,

Storm T ypes. Notice that, the granule Calif ornia is coarsening of the granule Oakland,

the granule 03/01/2015 18h is coarsening of the granule 03/01/2015, the granule 1 is

coarsening of the granule 1 and the granule thunderstorm is coarsening of the granule

thunderstorm.
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The expression roughly speaking was used to mentioned that granules are used in the

statements’ arguments. This was done in order to keep the presentation of the core ideas

of the granularities-based model simple. However, the concept called the granular term is

proposed that is the basis for what is used in the statements’ arguments. The motivation

behind this concept along with its formal definition is given below.

4.1 Granular Terms

The granules result from defining a granularity over a data domain. These may or may

not match abstract real world entities. For example, in space, the granularity Countries

contains granules compliant with entities like Portugal, USA, among others. But the

Raster(2km2) granularity does not match any particular entity, that is, the granules rep-

resent only fixed-length cells of size: two square kilometers. In time, for example, the

granularity Days contains granules that correspond to entities such as December 1, 1987,

or February 17, 1988. But we could have defined a granularity where granules are not

compliant with any particular concept.

Granularities might contain granules representing some concept/entity. Yet, in sev-

eral scenarios, it is desirable to use granules from one granularity to express particular

concepts/entities, at such granularity, which are not captured by the granules themselves.

Looking at time, common temporal concepts (i.e., time primitives) are time instant

or time interval (see Section 2.1.1). Consider the granularity of Days displayed in Figure

4.1, illustrating twelve days. In the same way, a time interval is defined over the time

domain, we should also be able to define a time interval at the granularity of Days as

displayed in Figure 4.1. Actually, it’s something that humans do unconsciously like

someone mentioned that a wildfire consumed forest from August 17, 2015 to August 19,

2015. In this particular case, that someone uses a discourse at the granularity of Days

and not at the time domain.

Likewise, common spatial concepts like point, line, regions were presented in Section

2.1.1. Therefore, and independently from the data domain, one might want to represent

a particular concept recurring to granules belonging to a granularity instead of their

domains of reference.

But how do we express time primitives in terms of a temporal granularity, for instance?

How these time primitives are transposed to granular computing? Time primitives have

been defined over the time domain (Vilain 1982; Allen 1983). Likewise, the spatial

primitives have been defined over two-dimensional or three-dimensional space (Ryden

2005), and not in terms of spatial granularities.

To meet this need, we introduce the granular term concept. Granular terms are built

based on function symbols and granules from a single granularity. . Let f be an n-ary or

a variadic function symbol and G a granularity. A n-ary function symbol has a fixed arity

while a variadic function symbol takes a variable number of arguments. A granular term

is f (g1, . . . , gn) such that gi∈G for all 1≤i≤n; or, a granular term is f (t1, . . . , tn) such that ti
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Figure 4.1: An illustration of a time interval be defined in terms of a temporal granularity.

is a granular term defined using the granularity G for all 1 ≤ i ≤ n. Granular terms in the

form of f (g1, . . . , gn) are simple, and the ones in the form of f (t1, . . . , tm) are compound.

Finally, granular terms can also be built using the identity function symbol Id(g ∈ G),

which is useful to use granules that already represent a particular concept.

Interval(03/01/2015 18h, 03/01/2015 19h) is an exam-

ple of a simple granular term using granules from Hours;

MultiInterval(Interval(03/01/2015 18h, 03/01/2015 19h), Interval(03/01/2015 21h,

03/01/2015 22h)) is an example of a compound granular term using granules from

Hours; and, Id(Oakland) is an example of a granular term built based on the identity

function symbol and the granularity Counties.

A function symbol allows building granular terms by using a collection of gran-

ules that represents a particular concept. As such, each function symbol contains its

own signature establishing the needed restrictions to build granular terms of type f .

For example, the Interval function symbol needs to establish additional constraints

in order to disallow improper granular terms of Interval like the ones in the form of

Interval(Interval(a,b), Instant(c)).

This work formalizes the following function symbols: Instant and Interval (see Sec-

tion 4.3.1), and Cell and RasterRegion (see Section 4.3.2). These allow modeling time

instants, time intervals, cells or raster regions, respectively.

Other examples of function symbols can be pointed out but we left their formalization

for future work. For example, the need to represent spatial features in vector space like

points, lines, polygons, and a set of polygons, among others examples is common. Also, in

several applications scenarios, the concept of trajectory is crucial to model the trajectories

made by people, cars, animals, among others. The function symbols needed depend on

the phenomenon under study and the underlying data type to record it (see Section 2.1.1).

Granular terms are used in the statements’ arguments. Therefore, the fol-

lowing event: "a tornado occurred on May 9th, 2015 between 15:32 and 15:52 pm
that moved through two cells of size 2km2 at Eastland county resulting in two vic-
tims" can be modeled like storm(RasterRegion(cell1, cell2), Interval(09/05/2015 15 :

45, 09/05/2015 15 : 52), Id(20), Id(tornado)) where the granules would come from
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(space, Raster(2km2)), (time, Minutes), (victims, Natural Numbers), (type,Storm T ypes).

4.2 Predicate and Atoms

A phenomenon is modeled through a collection of statements. These are built based

on a definition of a predicate. A predicate P contains a set of arguments Args(P ), and

its signature declares for each one of its arguments a set of granularities G(P ,arg) and

function symbols F(P ,arg) that can be used. Let granularT erm(G,f ) denote a granular

term of f using granules from the granularity G. This way, a well-formed atom (i.e., a

statement) is in the form of P(τ) with τ= {(arg, granularT erm(G, f )) | arg ∈ Args(P) ∧ f ∈
F(P, arg)}∧ G ∈ G(P, arg). τ denotes the tuple of terms of an atom.

Let’s introduce the storm predicate in order to model storm events. For each argument

of the storm predicate, we declare the following set of valid granularities:

• G(storm,space) =
{
CoordsSeven,Raster(0.5km2),Raster(2km2),Counties,States

}
• G(storm,time) = {Minutes,Hours,Days}

• G(storm,victims) = {Natural Numbers}

• G(storm,type) = {Storm T ypes}

Also, for each argument, we declare the following set of valid function symbols:

• F(storm,space) = {Cell,RasterRegion, Id};

• F(storm,time) = {Instant, Interval}

• F(storm,victims) = {Id}

• F(storm,type) = {Id}

A well-formed atom of the storm predicate uses granules

from the valid granularities declared for each argument as well

as the valid function symbols. For example, the atom o1 =

storm
({
Cell

(
cell0.5km

2

1

)
, Interval (10/5/2014 16 : 40, 10/5/2014 16 : 45) , Id (2) , Id (tornado)

})
describes a tornado occurred on May 10th, 2014 between 16:40 and 16:45 which moved

inside an area of 0.5km2 and resulted in 2 victims.

We assume that there is a base granularity for each set of valid granularities of each

argument of a predicate P . A base granularity of an argument of a predicate P is a

granularity that is related with any other granularity valid on such argument through

the relation finer than. A base granularity in G(P , arg) is formally defined as follows:

∃!Gbase ∈ G(P , arg) : Gbase4 G ∈ G(P , arg). For example, the base granularity in G(storm, space)

is CoordsSeven and the base granularity in G(storm, time) is Minutes.
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An atom describes something that happens in a spatiotemporal phenomenon. The

set of granularities involved in an atom defines the LoD at which something is de-

scribed. For example, the LoD of the atom o1 is LoD(o1) = {(space,Raster(0.5km2), (time,

Minutes), (victims, Natural Numbers), (type, StormsT ypes)}. We define the valid LoDs

of a predicate as follows.

Let γ = P
({(
arg1, granular term1

)
, . . . ,

(
argn, granular termn

)})
be an atom; the set{(

arg1, G1
)
, . . . ,

(
argn, Gn

)}
describing the granularity used in each argument defines its

LoD (γ).

Definition 4.1 (Valid Levels of Detail of a Predicate). Let P be n-ary predicate and its sig-

nature P
({(
arg,

(
G(P , arg),F(P , arg)

))
| arg ∈ Args(P )

})
defining a set of valid granularities

and function symbols for each argument; then LP =
⊗

arg∈Args(P ) G(P , arg) is the set of valid

LoDs of the predicate P .

The set of valid LoDs of a predicate results from the Cartesian product among the sets

of valid granularities. In our example Lstorm = G(storm,space)×G(storm,time)×G(storm,victims)×
G(storm,type). Therefore, the number of LoDs in Lstorm that one can observed the phe-

nomenon is 15. This means that, in our simple example, one user might need to go

through 15 LoDs in order to understand in what of LoDs some patterns are better per-

ceived without probably really knowing what patterns might be in the data. This paradox

is what we aim to solve in this PhD thesis, providing an overview of potential patterns

that might be in the data, and simultaneously, telling what in LoDs are suitable to study

them.

Two valid LoDs α and β of a predicate P can be related through a relationship called

more detailed than. We introduce the more detailed than relation between LoDs.

Definition 4.2 (α is more detailed than β). Let P be n-ary predicate; let α ∈ LP

and β ∈ LP be two valid LoDs of P such that α =
{(
arg1, G1

)
, . . . ,

(
argn, Gn

) }
and

β = {
(
arg1, H1

)
, . . . ,

(
argn, Hn

)
}; α is more detailed than β, α4Lβ, if and only if, Gi 4Hi

for all 1 ≤ i ≤ n.

The set of all valid LoDs LP of a predicate P with the relation

is more detailed than (4L) define a poset: LP = (LP ,4L). There is only one

least LoD α in LP such that for every LoD β in LP , α 4L β. Note that, the

least LoD of a predicate P is composed by the set of base granularities of the

corresponding arguments, which we denote by the base LoD of P . In our exam-

ple, part of the Hasse diagram regarding the poset Lstorm is illustrated in Figure

4.2, in which the base LoD of the storm predicate corresponds to the LoD0 =

(space, CoordsSeven), (time, Minutes), (victims, Natural Numbers), (type, Storm T ypes).

In order to have atoms at multiple LoDs, we propose to take an atom in one LoD and

express it at a coarser one. To that end, each function symbol must have associated a set of

generalization rules Gf , allowing each argument to have its own process of generalization.
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Figure 4.2: Part of the Hasse diagram concerning the poset Lstorm.

This way, the generalization can turn a time interval into a time instant, simplify a raster

region, or even turn a raster region into a cell (i.e., generalization-reduction process

as detailed in Section 2.3.2). The formalization of the generation rules concerning the

function symbols Instant, Interval, Cell and RasterRegion are detailed ahead in Section

4.3.

A simple example of generalization is the case of the identity function symbol. One

granular term Id(g1 ∈ G) is generalized into another Id(g2 ∈H) if the extent of g2 contains

the extent of g1, i.e., E(g1) ⊆ E(g2) and G is finer than H (G 4H .

The generalization of atoms occurs between two valid LoDs α and β of a predicate P

such that α is more detailed than β (α4Lβ). This way, each atom is generalized from α to

β by applying the generalization rules to each granular term specified in each argument

of an atom.

Let’s consider the atoms a1,. . . , a4, shown in Figure 4.3, expressed at the LoD1 of

the storm predicate. The atoms are describing the spatial location of lightnings using

the granularity of Raster(0.5km2) and when it occurred with the granularity of Minutes.

Consider that it would be desirable to describe the locations of lightnings and when they

occurred with coarser granularities (Hour and Raster(2km2)).

Making the generalization of atoms, we can produce a set of atoms at the valid LoD4

based on the set of atoms at the LoD1 of the storm predicate. For the sake of simplification,

we are not going into detail regarding the generalization rules as they will be detailed in

Section 4.3. In this example, the granular terms are just generalized based on the coarsen-

ing relation that occurs between granules. Informally, the atom a4 can be generalized into

the atom a8 once the extent of the granule cell1 is contained by the extent of the granule
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cella - E(cell1) ⊆ E(cella); the extent of the granule 02− 03− 2013 18 : 35 is contained by

the extent of the granule 02−03−2013 18 - E(02−03−2013 18 : 35) ⊆ E(02−03−2013 18);

and, similarly, E(1) ⊆ E(1), E(Lighting) ⊆ E(Lighting). Similarly, the atom generalization

is applied for the remaining atoms at the LoD1.

Figure 4.3: Example of atoms at different valid LoDs of the storm predicate.

The atom generalization provides an instrument to automatically generalize a phe-

nomenon for coarser LoDs. A granularities-based model may contain equal atoms, i.e.,

atoms composed by the same granular terms in some valid LoD of a predicate P in spite

of the fact that they are referring to different occurences in a phenomenon. As can be

seen in Figure 4.3, the atoms at the valid LoD1 of the storm predicate are discernible from

each other while at the valid LoD4 some atoms are equal, namely a7, a8. Note that, they

are describing distinct occurrences of lightnings.

In general, at a valid LoD of a predicate P , there may be atoms equal to each other.

Furthermore, as the atoms are described through coarser valid LoDs of P , the number of

equal atoms tends to increase. When there are equal atoms at some LoD of a predicate

P , we are interested in performing synthesis of atoms in order to reduce the number

of atoms that describe a phenomenon. Thereby, we introduce the concept of granular

synthesis.

Beforehand, and without loss of generality, we assume that any atom of form

P
({(
arg1, granular term1

)
, . . . ,

(
argn, granular termn

)})
can be expressed equivalently

as GSyn
(
P
({(
arg1, granular term1

)
, . . . ,

(
argn, granular termn

)})
),1

)
, where GSyn is a re-

served predicate such that the first argument contains an atom of a predicate P and the

second one indicates the number of occurrences of such atoms which, in this case, is one.

Definition 4.3 (Granular Synthesis). Let P be n-ary predicate; let τA be a tuple of

terms; let A be a set of atoms at a valid LoD of P such that any atom a ∈ A is of form

GSyn(P (τA) , f rA); then, a function g : A −→GSyn(P (τ), f r) produces a granular synthesis

where f r is the sum of all frequency values f rA in A such that f r ∈ N.
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A granular synthesis makes a summary of a set of equal atoms at a valid LoD of a

predicate P . Thus, a granular synthesis is an instrument to reduce the volume of atoms

at some LoD of a predicate P . As shown in Figure 4.4, the atoms a7, a8 resulted in the

granular synthesis a9. The remaining atoms of the storm predicate are expressed also as

granular syntheses in spite of the fact that their count is equal to one.

Figure 4.4: Example of granular syntheses at the LoD4 of the storm predicate.

The concepts introduced and illustrated lead to a model that allows us to look at a

phenomenon and analyze it at different LoDs, formalized as follows.

Definition 4.4 (Granularities-based Model). Let G= {A(G1), . . . ,A(Gn)} be a set of anno-

tated granularities, P a set of predicates and Fa set of function symbols. Each predicate

has defined its signature. A granularities-based model M is a set of well-formed atoms.

1. P(τ) with τ= {(arg, granularT erm(G, f )) | arg ∈ Args(P) ∧ f ∈ F(P, arg)}∧ G ∈
G(P, arg).

2. GSyn(P (τ ), fr) such that f r∈N.

4.3 Function Symbols

Function symbols need to be formalized in order to allow us to define granular terms.

Regardless of the function symbol used to define a granular term, it has to obey the

general definition of the term granular. In this work, we formalize the following function

symbols: Instant and Interval (see Section 4.3.1), and Cell and RasterRegion (see Section

4.3.2). Before we present them, there is a key aspect to be discussed.

The concept of the granular term brings a tremendous advantage that, to the best

of our knowledge, has been ignored by granular computing. The ToG proposed intro-

duced four induced relationships that allow to bringing relations defined over the original

domain for the granules. For example, in space, we can evaluate whether an element be-

longing to a two-dimensional space is north of another one. Thus, we can also check if
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one granule is completely, partially, weakly or existentially north of another. In time, we

can assess if an element belonging to a time domain occurs before another one. Therefore,

we can also check whether one granule is completely, partially, weakly or existentially

before another.

The establishment of qualitative relations between what happens in space and time

is a common practice. For example, we may be interested in whether events overlapped

in time or whether two events are overlapped in space (see Section 2.1.1). However,

the granules themselves do not embrace any particular concept, and consequently, the

induced relations are not enough to bring qualitative reasoning into the granular domains.

By introducing granular terms, we can now have concepts like time interval, time

instant, cell, region in a granular domain, and therefore, we can bring qualitative relations,

that are defined in the domains of reference, to granular domains. This is accomplished

by using the induced relations on top of the granular terms. In this work, this was done

for temporal granular terms. This resulted in a supplementary contribution of this PhD

thesis.

A formal study about what happens to temporal relations between temporal terms

when these are generalized was made, thus allowing, reasoning about temporal relations

at different granularities. This study is introduced in Section 4.3.1 but details can be

found in Appendix B (Topological Relations on Temporal Granular Terms). This study

extends the results obtained by Euzenat and Montanari 2005 obtained in a different line

of research as the authors’ starting point is a qualitative time representation (Euzenat and

Montanari 2005). Euzenat and Montanari 2005 assumed that the generalization of any

interval of time results always in an interval of time. However, the generalization of an

interval of time might result in an instant of time. In those cases, Euzenat’s conversion

table is no longer applicable, something that was handled in our study.

4.3.1 Temporal Granular Terms

In order to represent time, we introduce temporal granular terms, which are built using

temporal granularities. As to the time domain, time instants have no duration. In contrast,

a time interval is the set of all time instants between a starting point and a finishing point.

Let T be a temporal granularity. To represent a time instant of T , we introduce the

Instant function symbol defined as follows: Instant(t) where t ∈ T .

Two granules of T can be related through the induced complete relationship <C (see

Section 3.1.1) in order to tell whether a granule of T occurs before another one. In order

to represent time intervals of T , we introduce the Interval function symbol.

Definition 4.5 (Time Interval). Let Interval be a function symbol and its arity is equal to

two; let t− and t+ be granules of T such that t− <C t+ (also mentioned as the endpoints of

the interval); a time interval of T {ti∈ T | t− <C ti <C t+} is denoted by Interval(t−, t+).
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Granular terms of Instant or Interval should be interpreted in the context of the tem-

poral granularity used to build them. For instance, a granule from a granularity Hours

represents an hour of time and it should not be considered a time interval in the context

of this work but rather an indivisible moment of time. Recall that, a granule is a non-

decomposable entity. Therefore, granules from a temporal granularity T are interpreted

as time instants.

Based on the temporal granular terms presented, we can build atoms

describing that something occurred in some time instant or time interval

of T . A well-formed atom describing a hail event is for example: o2 =

storm
({
Cell

(
cell0.5km

2

1

)
, Interval (11/5/2014 16 : 40, 11/5/2014 16 : 45) , Id (1) , Id (hail)

})
.

In this example, the interval of time is a granular term defined at granularity Minutes.

Allen 1983, Vilain 1982 and point algebras model qualitative relations between time

intervals, time intervals and time instants (or vice-versa), and time instants, respectively,

which are defined over the time domain. Since we can bring the relations of the do-

main into the granularities (see Section 3.1.1), we transpose the topological relations for

temporal granular terms.

Let a=Instant (α) ,b=Instant(β) be granular terms of T . a can occur before b (α <Cβ),

both time instants can be equal (α =β), or a can occur after b (α >Cβ). On the other hand,

let c =Interval(α−,α+) and d =Interval(β−,β+) be granular terms of T . c and d can be

related as follows (the symmetric relations are not displayed):

1. c before d iff α+<Cβ−

2. c equals d iff (α−=β−) ∧(α+=β+)

3. c overlaps d iff
(
α−<Cβ−

)
∧
(
α+>Cβ−

)
∧ (α+<Cβ+)

4. c meets d iff α+=β−

5. c starts d iff α−=β− ∧ α+<Cβ+

6. c during d iff α−>Cβ− ∧ α+<Cβ+

7. c finishes d iff α+=β+ ∧α−>Cβ−

Last but not least, let e=Instant (α) and f =Interval(β−,β+) be granular terms of T . e

and f can be related as follows (the symmetric relations are not displayed):

1. e before f iff α<Cβ−

2. e starts f iff α=β−

3. e during f iff β−<Cα<Cβ+

4. e finishes f iff α=β+
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5. e after f iff β+<C α

Generalization rules are defined for each function symbol so that the generalization

of atoms can be performed automatically. We define generalization rules applicable to

temporal granular terms. When a temporal granular term is generalized, an instant or

an interval of time can remain an instant or an interval, correspondingly, but with less

precision; or a time interval can become a time instant. The generalization of temporal

terms is formalized as follows. Let T1 and T2 be temporal granularities such that T1 is

finer than T2 (T1 4 T2).

An instant of time a1=Instant (α) of T1 can be generalized into an instant of time

a2=Instant (α′) of T2 through

GInstant: (a1, T1)−→ (a2,T2) if and only if ∃! α
′
∈T2: E(α) ⊆E(α′)

that is if there is exactly one granule α
′

belonging to T2 such that the extent of α is

contained by the extent of α′. For example, the Instant(10−5−2014 16 : 40) at granularity

Minutes is generalized into the Instant(10−5−2014 16h) at granularity Hours.

An interval of time a1 = Interval (α−,α+) of T1 can be generalized into an interval

of time a2 = Interval
(
α
′−
,α
′+)

of T2 through

GInterval: (a1, T1)−→ (a2, T2) if and only if ∃! α
′−∈T2: E(α−)⊆ E

(
α
′−)

and

∃! α
′+∈T2: E(α+)⊆ E

(
α
′+)

That is if there is exactly one granule α
′−

belonging to T2 such that the extent of α− is

contained by the extent of α
′−

and, if there is exactly one granule α
′+

belonging to T2

such that the extent of α+ is contained by the extent of α
′+

. Moreover, an interval of time

a1 = Interval (α−,α+) of T1 can be generalized into an instant of time a2=Instant
(
α
′)

of T2 through

GInterval: (a1, T1)−→ (a2,T2) if and only if ∃! α
′
∈T2: E(α−)⊆E

(
α
′)
∧E(α+)⊆E

(
α
′)
.

That is if there is exactly one granule α
′

belonging to T2 such that the ex-

tent of α− and α+ is contained by the extent of α
′
. For example, the

Interval (10−5−2014 16 : 40,10−5−2014 17 : 45) at granularity Minutes is generalized

into Interval(10−5−2014 16h, 10 − 5 − 2014 17h) at granularity Hours, or into

Instant(10−5−2014) at granularity Days.

The generalization of temporal granular terms may affect the temporal topological

relationships held between pairs of temporal granular terms. On one hand, the type

of relationship may change. For instance, we might have a relation between two-time

intervals that may turn into a relation between a time interval and a time instant. On
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the other hand, there are scenarios where the type of topological is kept but the actual

relation (e.g., before) is changed (e.g., to equal).

An overview of the possible transitions between types of topological relations is given

in Figure 4.5. To each scenario, an example is given based on the temporal granularities

T1 and T2 illustrated in Figure 4.6. The granules of T1 are identified by a number and the

granules of T2 by a letter to simplify the discussion that follows.

Figure 4.5: Possible transitions in the relationships between pairs of temporal terms.

Figure 4.6: Example of two temporal granularities related by the finer-than relationship.

Consider the following granular terms of Interval using granules from

T1: α=Interval(1,5) and β=Interval (3, 6) such that α overlaps β. After the gener-

alization of α and β to the granularity T2, α and β became α′=Interval(a,b) and

β′=Interval(b,c), respectively. As such, the type of relation is kept (scenario 1) but the

actual relation is changed to α′ meets β′ as can be observed in Figure 4.7.

A relation between two-time intervals can turn into a relation between an instant and

an interval of time or the other way around (scenario 4). For example, α=Interval(1,2)

occurs before than β=Interval (3, 6). After their generalization, we get: α′ = a occurs

before than β′ = Interval(b,c) as displayed in Figure 4.8.

Also, two-time intervals can turn into a relation between two-time instants (scenario
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Figure 4.7: First illustration of the generalization of temporal granular terms.

Figure 4.8: Second illustration of the generalization of temporal granular terms.

6). For example, α=Interval(3,4) meets β=Interval (4, 5). After their generalization we

get: α′ = b equals β′ = b. Moreover, a relation between an instant and an interval of time

(or vice-versa) can be kept but the actual relation can be changed (scenario 2 or 3). For

example, α= 4 occurs during β=Interval (3, 7) turns into α′= b starts β′=Interval (b, d).

Furthermore, a relation between an instant and an interval of time (or vice-versa) can

turn into a relation between two-time instants (scenario 5). For instance, α= 3 starts

β=Interval (3,5) leads to α′= b equals β′= b. Last but not least, a relation between two-

time instants may be kept or changed (scenario 7). For example, α= 9 occurs before β= 10

becomes α′= e equals β′= e.

A detailed study of the possible changes in all scenarios, as well as in what condi-

tions they occur is provided in Appendix B (Topological Relations on Temporal Granular

Terms).

4.3.2 Spatial Granular Terms

In order to represent spatial features in raster space, we introduce spatial granular terms.

These are built based on granularities defined over two-dimensional space where granules

have equal square sized extents, i.e., raster granularities.
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For the contexts of raster data, points are represented as cells, and raster regions are

groups of contiguous cells that portray the shape of an area. Using granules from raster

granularities, one may want to use granular terms to describe cells or raster regions.

In general, a region is mentioned as a set of connected cells, i.e., one can "travel" from

any cell to any other in the region by following its neighbors. However, there are different

definitions of raster regions (Kong and Rosenfeld 1989; Egenhofer and Sharma 1993).

These definitions rely on the neighborhood concept. The 4-neighbors of a cell consist

in the cells that share the vertical and horizontal sides and the 8-neighbors are the ones

sharing diagonal sides in addition to the 4-neighbors.

A region (without holes) is, in general, defined by a Jordan2 curve which divides a

raster space into two parts (interior and exterior). However, if we consider 4-adjacency or

8-adjacency, a paradox emerges in some curves (Kong and Rosenfeld 1989) as displayed

in Figure 4.9.

Figure 4.9: An example of a curve in the raster space.

When we consider the 4-adjacency, the curve is not closed and the inside of the curve

is not connected to the outside of the curve. This violates the Jordan Curve theorem, once

a non-closed curve is dividing space into two parts. On the other hand, if the 8-adjacency

is considered, the curve is closed and the inside of the curve is connected to the outside of

the curve. This also violates the theorem because a closed curve has not separated space

into two parts.

One approach to overcome this problem is to consider different adjacency rules regard-

ing a region and its complement (Kong and Rosenfeld 1989). In this work, we do not aim

to propose a new raster region definition and we will adopt the mixed adjacency model

(8, 4) to define a raster region, i.e., a raster region is 8-connected and its complement is

4-connected.

Let S be a raster granularity. To represent a cell of S, we introduce the Cell function

symbol defined as follows: Cell(c) where c∈S. In order to represent a raster region of S,

we introduce the RasterRegion function symbol as follows.

Definition 4.6 (Raster Region). Let RasterRegion be a variadic function symbol; let

c1, . . . , cn be granules of a granularity S, i.e., ci ∈ S for all 1≤i≤n; a raster region of S

2Jordan Curve Theorem: http://mathworld.wolfram.com/JordanCurveTheorem.html
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is denoted by RasterRegion (c1, . . . , cn) where {c1, . . . , cn} is a set and their elements are

8-connected, the S\{c1, . . . , cn} is 4-connected, and n> 1.

Based on the spatial granular terms presented, we can define atoms de-

scribing that something occurred in a particular cell or region of S. For ex-

ample: o3 = storm(RasterRegion
(
cell0.5km2

1 , cell0.5 km2

2 , cell0.5 km2

3

)
, Interval(7/10/2014

15 : 25, 7/10/2014 15 : 33), Id(2), Id(tornado)).

Let S1 and S2 be raster granularities such that S1 4 S2. When a spatial granular term

is generalized, a cell or a raster region can remain cell or raster region, correspondingly,

but with less precision; or, a raster region can become a cell. The generalization of spatial

granular terms is formalized as follows.

A granular term a1 = Cell(c) of S1 can be generalized to a granular term a2 =

Cell(c′) of S2 through

GCell: (a1, S1)−→ (a2,S2) if and only if ∃! c′∈S2: E(c) ⊆E(c′)

that is if there is exactly one granule c
′

belonging to S2 such that the extent of c is con-

tained by the extent of c′.

Let a1=RasterRegion(c1, . . . , cn) be a granular term of S1. It can be generalized

to a granular term a2 =RasterRegion(c
′

1, . . . , c
′
m) of S2 (m≤n) through

GRasterRegion: (a1, S1)−→ (a2,S2) if and only if ∀ i ∈{1 . . . ,n} ci ∈S1 ∃!j∈{1 . . . ,m}

c
′

j∈S2: E(ci) ⊆E(c
′

j )

that is if for any granule ci defining the raster region a1 there is exactly one granule

c
′

j belonging to S2 such that the extent of ci is contained by the extent of c
′

j . Moreover,

the granular term a1 =RasterRegion(c1, . . . , cn) of S1 can be generalized to a granular

term a2 = Cell(c
′
) of S2 through

GRasterRegion: (a1, S1)−→ (a2,S2) if and only if ∃! c
′
∈S2∀i ∈{1 . . . ,n} ci ∈S1: E(ci) ⊆E(c′)

that is there is exactly one granule c
′

belonging to S2 such that any granule ci defining

the raster region a1 has its extent contained by the extent of c
′
.

To illustrate the generalization rules associated with the function symbol

RasterRegion GRasterRegion, Figure 4.10 shows two raster regions being generalized to

a coarser granularity. The region a1 changes from a RasterRegion to the Cell a2 while the

region b1 remains a RasterRegion with less precision denoted as b2. A study about the

generalization of spatial granular terms and its impact on the topological relations (e.g.,

disjoint, meets, contains) between them was left for future work.

82



4.4. GRANULARITIES-BASED MODEL IN ACTION

Figure 4.10: Illustration of the generalization rules associated to GRasterRegion.

4.4 Granularities-based Model in Action

The granularities-based model is illustrated with tornadoes occurred in the USA between

1990 and 2015. This phenomenon is described by a collection of 32570 geo-referenced

spatiotemporal events. The F1 tornadoes were excluded since their impact in terms of

victims is not significant and their spatial coordinates were not accurate, in general. So we

kept 27182 spatiotemporal events representing tornadoes with categories ranging from

F2 to F5.

These events were modeled through a tornado predicate, with three arguments

tornado(space, time,victims). The most detailed spatial granularity Raster
(
0.13km2

)
is

based on a grid of 32768 x 32768 cells that cover the analyzed spatial extent of the phe-

nomenon, and each cell has an area of 0.13 km2. The other coarser spatial granularities

were obtained dividing by a factor of 2 the number of cells in the grid. So the valid gran-

ularities for space were rasters with cell sizes of 0.13 km2, 0.5 km2, 2 km2, 8 km2, 32 km2.

The used time granularities were Minute, Hour, Day, Week, Month.

The considered granular terms required to model these events were: Instant and

Interval for the time argument; Cell and Raster Region for the space argument.

The raw data (tornadoes) were encoded at the base LoD of the tornado predicate which

includes the time granularity of Minute and the space granularity Raster
(
0.13km2

)
. The

temporal granular terms Instant and Interval, and the spatial granular terms Cell and

Raster Region were used with the tornado predicate according to the data.

As shown in Table 4.1, at the base LoD, some tornadoes were described using:

• the Cell and Instant granular terms (27%) - those with a very short duration and

very little spatial expression;

Table 4.1: Percentage of atoms using the proposed granular terms.

Instant Interval Total
Cell 27% 16% 43%
Raster Region 3% 54% 57%
Total 30% 70%
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• the Cell and Interval granular terms (16%) - those with a very little spatial expres-

sion but with a time duration larger than a single minute; the average size of the

intervals is 8 minutes and 22 seconds;

• the Raster Regions and Instant granular terms (3%) - the few ones that have a

duration not larger than a minute with a spatial expression that requires more than

one Cell; the average number of cells for the raster regions is 70.6;

• the Raster Regions and Interval granular terms (54%) - the few ones that have a

duration larger than a minute and with a spatial expression that requires more than

one Cell; the average number of cells for the Raster Regions is 39.6 and the average

number of minutes for the Intervals is 7 minutes and 12 seconds.

Notice that, most of the tornadoes (70%) require a granular term Interval. Also,

most tornadoes (57%) require a granular term Raster Regions. The description of those

tornadoes would be impossible, or at least very hard to encode without the concept of

granular terms and especially the Intervals and Raster Regions.

The generalization rules presented in Section 4.3.1 and 4.3.2 were adopted, enabling

the automatic computation of the model at coarser LoDs. Given all tornadoes encoded

at the base LoD of the tornado predicate with the appropriate granular terms, the model

has been computed at coarser LoDs, at all combinations of space and time granularities.

To illustrate how the granularity affects our perception about temporal topological

relationships between atoms, let’s consider the three F4 tornadoes that occurred in west-

ern Iowa on May 27, 1995. The first one (identified as A) started at 18:22 and ended

at 19:47. The second one (identified as B) occurred from 18:55 until 20:24. The third

one (identified as C) has started at 18:56 and ended at 20:08. At granularity Minutes, A

overlaps B and A overlaps C. However, when the tornados are observed at granularity

Hours, our perception is changes and therefore A starts B and A starts C.

To study the co-occurrence of tornadoes in space, we compute the total atoms that

exist in each spatial granule considering LoDs where atoms (the space argument) are

defined using the granularities Raster
(
0.5km2

)
, Raster

(
8km2

)
and Raster

(
32km2

)
.

For each scenario, we display on a map (Figure 4.11, Figure 4.12, and Figure 4.13) the

spatial granules colored according to the number of atoms in it. Orange shows low values

while the pink and dark blue ones show high values. Looking at Figure 4.13, the spatial

co-occurrence of tornadoes becomes clear in LoDs where the spatial granular terms are

built using granules from Raster
(
32km2

)
. Notice that, the change in perception is the

result of the change of the granularities and not a result of a change of the classes used in

the thematic maps.
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Figure 4.11: An overview of all atoms in LoDs containing the granularity Raster
(
0.5km2

)
.

Figure 4.12: An overview of all atoms in LoDs containing the granularity Raster
(
8km2

)
.

Figure 4.13: An overview of all atoms in LoDs containing the granularity Raster
(
32km2

)
.
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4.5 Related Works and their Limitations

This Chapter presents the granularities-based model in order to provide different phe-

nomenon representations for different LoDs. To the best of our knowledge, the concept

of LoD (sometimes mentioned in the literature as scale) has been used without being

associated to a formal meaning. A core contribution of this PhD Thesis is the formal

concept of Level of Detail (LoD) which is the foundation of the granularities-based model

on providing different phenomenon representations for different LoDs.

Also, the granularities-based model stands out from others because: (i) each predicate

provides a representation of the phenomenon like the multirepresentation approaches,

but unlike them, there is no need to define everything at the instances level (see Sec-

tion 2.3.1); (ii) unlike the multiresolution approaches, the granularities-based model can

express a phenomenon in several LoDs, and not just in several spatial LoDs (see Sec-

tion 2.3.2); (iii) as opposed to current granular computing approaches which are mainly

concerned with indexing and aggregating data at different granularities, the granularities-

based model provides different phenomena representations for each LoD; also, we provide

instruments to create granular syntheses and not just a way of converting information

from one granularity to another (see Section 2.3.3); finally (iv) once the atoms at the

lowest LoD of the predicates are produced, the phenomenon can be expressed into other

coarser LoDs automatically based on the atom generalization that relies on the general-

ization rules for each function symbol; (v) based on the general concept of granular term,

spatial granular terms (Cell and RasterRegion) and temporal granular terms (Instant and

Interval) were formalized; these embedded the generalization-reduction process which is

commonly discussed concerning the generalization of spatial features and, consequently,

map generalization (see Section 2.3.2); (vi) last but not least, the granularities-based

model can be easily extended in order to model other kinds of data. To the best of our

knowledge, there is no other model combining such characteristics.
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5
SUITE: A framework for SUmmarizIng

spatioTemporal Events

Spatiotemporal events represent a spatiotemporal dynamism that may follow a pattern

or embody several patterns. These can be seen like non-identical distributions of events

that happen across the entire space and overall time. Finding such patterns can explain

or at least can help to understand the phenomena, which can be important for several

organizations.

When there is little information about a spatiotemporal phenomenon a user will likely

face difficulties during the analysis of phenomena logged as spatiotemporal events. The

VA analytical tools are commonly designed to look for non-spatiotemporal patterns based

on a single LoD analysis approach so that the difficult choice of the LoDs is left for the

users (see Section 2).

However, there are numerous spatiotemporal events collected at high LoDs and the

highly dynamic environment embedded in spatiotemporal events provides opportuni-

ties to get spatiotemporal patterns in many different forms, perceptible in some LoDs

but undetectable in others. Therefore, from our perspective, to enhance the analysis of

spatiotemporal events, a user should be provided with an overview about the potential

spatiotemporal patterns and the suitable LoDs to find them at early stages of the analysis.

To meet this need, we have proposed a Theory of Granularities (ToG) which is the

foundation of the Granularities-based Model. Using the granularities-based model, we

can have a phenomenon’s representation for each LoD. As spatiotemporal events are

being collected at high LoDs, there are many LoDs from which one can analyze the data.

However, at this point, we cannot provide an understandable high-level overview about

potential patterns across LoDs.

This Chapter proposes a framework for SUmmarizIng spatioTemporal Events (SUITE)

to help users to explore phenomena logged as spatiotemporal events across multiple LoDs,
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simultaneously, helping them to understand in what LoDs patterns may emerge. SUITE

is devised to build summaries, at different LoDs. The users should be able to inspect and

compare the phenomenon’s perception across multiple LoDs.

The proposed framework is based on the granularities-based model but, since we are

assuming spatiotemporal events, we consider that each used predicate has one and only

one argument space describing the spatial location of the event, and one and only one

argument time specifying the time moment. Other arguments can be used to detail what

has happened.

The signature of event follows the pattern, event((space, (G(event, space),F(event, space))),

(time, (G(event, time),F(event, time)),Args), and Args = {arg1, (G(event,arg1),F(event,arg1)), . . . ,

(argn, (G(event,argn),F(event,argn))} represents the signature for the other arguments. We also

assume that any valid spatial granularity does not have a temporal evolution, i.e., the

spatial granularities used remain stable along the temporal scope considered. Further-

more, for the sake of simplification and assuming atoms of the predicate event, we will

use the following notation: (τ)/fr to refer to granular syntheses of the event predicate in

substitution of the granular synthesis notation GSyn(P (τ ), fr) introduced in Chapter 4.

Let γ = {(space, S) , (time, T ) , . . . , (argn, Gn)} ∈ Levent be a LoD of event. Let s ∈ S be

a spatial granule of the granularity S and t ∈ T be a temporal granule of the granularity

T . Therefore, we can have the pair (s, t) called spatiotemporal granule of the spatial and

temporal granularity S and T , correspondingly.

Given a spatial and temporal granularity, we may represent the set of spatiotemporal

granules based on a simplified representation, like a cube, as displayed in Figure 5.1

where the spatial granularity is illustrated using X and Y axes and the temporal granu-

larity is depicted using the Z axis. The entire extent of a specific cube’s cell illustrates a

spatiotemporal granule.

A well-formed atom event
(
(space, fα), (time, fβ), args

)
/fr represents, at γ LoD, fr

spatiotemporal events that occurred on spatiotemporal granules referred by a spatial

granular term made through a function symbol fα and a temporal granular term built

based on a function symbol fβ such that fα ∈ F(event, space)) and fβ ∈ F(event, time)). Given a

well-formed atom at γ LoD:

• the argument space will be a spatial granular term that might refer to one or more

spatial granules

• the argument time will be a temporal granular term that might refer to one or more

temporal granules

• the fr value might be greater or equal to one

In Figure 5.2, several graphic representations of atoms in terms of their spatiotemporal

granules are given.

Figure 5.2a shows an atom with only one spatial granule and one temporal granule,

and therefore, one spatiotemporal granule. Figure 5.2b displays an atom with two spatial
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Figure 5.1: Schematic representation of spatiotemporal granules.

Figure 5.2: Several graphical representations of atoms in terms of their spatiotemporal
granules.
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granules and one temporal granule that leads to the occupation of two spatiotemporal

granules. In Figure 5.2c an atom also occupies two spatiotemporal granules but in this

case, it refers to one spatial granule and two temporal granules. Finally, Figure 5.2d dis-

plays an atom referring to two spatial granules and two temporal granules and therefore

occupying four spatiotemporal granules.

Moreover, when fr = 1 is an atom representing only one event. Otherwise, there are fr
events that refer to the same spatiotemporal granules and have the exact same description

in terms of the other attributes Args.

A granularities-based model (or just model), M(event)γ , regarding a predicate event

at γ LoD can be described as a set of indexed collections of atoms, each indexed by a

spatiotemporal granule from S × T -

{
st→

{
event((space, fα(..., s, ...)) ,

(
time, fβ(..., t, ...)

)
, args)/f r

}
| st = (s, t) ∈ S × T

}
(5.1)

In general, a set of atoms is associated to each spatiotemporal granule st ∈ S × T . This

set may be empty, meaning that no event happened at the spatiotemporal granule st; or

the set has just one atom, meaning that fr similar events happened at the spatiotemporal

granule st; or the set has many atoms, meaning that many different events happened at

the spatiotemporal granule st.

The interpretation of what the spatiotemporal granules are indexing might change

according to the phenomenon. In case the phenomenon is described only by atoms

that occur in only one spatiotemporal granule (see Figure 5.2a) then we can say that

spatiotemporal granules are indexing the events that occurred totally in it. When the

phenomenon contains atoms described by one or more spatiotemporal granules then

we can only say that the spatiotemporal granules are indexing the events that occurred

partially in it.

Let’s represent by sij the spatial granules from S1, tk the temporal granules from

T1 and Garg = {ga, gb, gc}. Figure 5.3 presents a set of available atoms indexed by each

spatiotemporal granule (sij , tk). For the sake of simplification, in the argument space

are only used granular terms of type Cell, in the argument time granular terms of type

Instant and in the argument agr granular terms of type Id. The functions symbols are

omitted in the following formulas.

Each atom is written in a simplified form, such that

event
(
(space, sij ), (time, tk), (arg, garg )

)
/f r is just represented by garg /f . For in-

stance, the set of atoms associated with (s13, t1) is {ga/4} and {gb/2}, and the set of atoms

associated with (s24, t1) is {ga/1, gb/3, gc/1}.
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Figure 5.3: Schematic representation of M(event)γ .

5.1 SUITE’s Overview

The USA traffic accident dataset1 can be modeled with the granularities-based model

using the following predicate accident(space, time,victims). Let’s consider the spatial

granularities Raster(0.14 km2), Raster(2.27 km2), Raster(36.39 km2), Counties, States for

the argument space; the temporal granularities Day, Week, Month, and Y ear for the ar-

gument time; and, the granularity Natural Numbers, defined over N where each granule

corresponds to an element of the corresponding domain, for the argument victims. For

this dataset, we just need the identity function symbol for all the arguments of the acci-

dent predicate. The raw data (accidents) were encoded at the base LoD of the accident

predicate. Afterward, the generalization of all accidents was done automatically for all

LoDs following the needed generalization rule.

This way, the traffic accident dataset can be described at each LoD γ by an equation

similar to 5.1, i.e., M(accident)γ , where each spatiotemporal granule st = (s, t) indexes a

set of atoms representing the accidents which happened at that spatiotemporal granule.

We can apply simple statistics to summarize M(accident)γ .

For instance, some spatiotemporal granules st index empty sets while others index

non-empty sets. The percentage of spatiotemporal granules with non-empty sets, named

occupation rate, measures the average density of a model at a given LoD. Figure 5.4 shows

the occupation rate for different spatiotemporal LoDs. On the left-hand chart, the occupa-

tion rate is shown for all the spatiotemporal LoDs where the spatial granularity is a raster

one. On the chart on the right, the occupation rate is shown for all the spatiotemporal

LoDs where the spatial granularity represents an administrative division like Counties.

As we can see in Figure 5.4, the occupation rate increases with coarser spatiotemporal

granules as expected. But considering just the chart on the left, the spatiotemporal LoD

(Raster(36.39 km2),Y ears) has the occupation rate value much greater than the others

spatiotemporal LoDs.

1USA car accidents occurred between 2001 and 2013, which corresponds to about 450.000 georeferenced
accidents: http://www.nhtsa.gov/FARS
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Figure 5.4: The occupation rate for different combinations of spatial and temporal granu-
larities.

At each LoD, the context for the occupation rate, shown in Figure 5.4, is global in the

sense that it considers all spatiotemporal granules. The same computation can be done

for each temporal granule ti , considering all the spatiotemporal granules st = (s, ti). In

that case, we get the temporal evolution for the occupation rate computed at each spatial

context. This was employed in our data regarding traffic accidents in the USA which

result in a time-series for each spatiotemporal LoD as displayed in Figure 5.5. The time

series are ordered by the spatial granularity and then by the temporal granularity. The

ordering is ascending and is based on the average extent of the granularity’s granules.

Figure 5.5: The occupation rate computed at each temporal granule.

Each time series is displayed based on its maximum and minimum values. Bearing

this in mind, at States Y ear spatiotemporal LoD the one value is a constant which means

that there is at least one accident in each state for each year. Another pattern can be seen

at 36.39 Y ear spatiotemporal LoD, for instance, which is showing a decreasing trend,

meaning that the number of spatial granules with occurrences of accidents has decreased;

and, at the spatiotemporal LoDs, containing the granularities Months like for example

the spatiotemporal 0.14km2 Month a cyclical pattern is observed that occurs every year.

At the end of February, the number of traffic accidents reach, in general, its minimum

value and then starts to increase. Around September the number of traffic accidents starts

to decrease.
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Figure 5.6: The occupation rate computed at each spatial granule.

On the other hand, the occupation rate computation can also be done for each spatial

granule sj , considering all the spatiotemporal granules st = (sj , t), getting for each spatial

granule the occupation rate across all the temporal granules. Figure 5.6 shows two maps

where each "point" represents a spatial granule and its color is given by the occupation

rate value according to the map’s legend (see Figure 5.6).

The map at 0.14km2 Days spatiotemporal LoD shows an outlier, highlighted by a

dashed circle. In the "yellow" spatial granule, there are accidents occurring with some

degree of frequency in comparison with the other granules. When we change the spa-

tiotemporal LoD to 0.14km2 Y ears, the perception is changed and that outlier is no longer

perceived.

The proposed framework builds summaries of each phenomenon’s LoD to support

users in carrying inspection and comparison tasks of a phenomenon across multiple LoDs.

Observing summaries across multiple LoDs can provide useful information to identify

the proper ones to carry out a particular analysis. Generically, we will refer to those

summaries as abstracts.

93



CHAPTER 5. SUITE: A FRAMEWORK FOR SUMMARIZING SPATIOTEMPORAL

EVENTS

5.2 Abstracts

Our framework was designed to build abstracts over M(P )γ . An abstract A can be, for

instance, a number, a vector, or even a matrix measuring a particular feature of a phe-

nomenon. Five types of abstracts with different contexts are introduced: (i) Global Ab-

stract; (ii) Temporal Abstract; (iii) Spatial Abstract; (iv) Compacted Temporal Abstract;

(v) Compacted Spatial Abstract.

A Global Abstract is a single summary of all atoms indexed by spatiotemporal gran-

ules as illustrated in Figure 5.7. For example, in Figure 5.4, we have displayed one Global

Abstract (i.e., the occupation rate) for each spatiotemporal LoD about traffic accidents in

USA. The Global Abstract is formally defined as follows.

Figure 5.7: The intuition of the Global Abstract.

Definition 5.1 (Global Abstract). Let M(P )α be the set of granular syntheses indexed

by each spatiotemporal granule. Thus, a function FGlobal : (M(P )α)→ AGlobal produces a

global Abstract such that AGlobal is one abstract A.

Spatiotemporal statistics can be used to produce Global Abstracts (see Section 2.1.3) in

order to get hints about properties concerning the distribution of spatiotemporal events.

Global Abstracts may hide some important variations in space and/or time. Hence,

we introduce the possibility to create abstracts that are more "detailed". One of them is

the Spatial Abstract.

A Spatial Abstract contains a summary for each temporal granule. The intuition of

this type of abstract is given in Figure 5.8.

As an example several Spatial Abstracts were shown in Figure 5.5 (i.e., the occupa-

tion rate), one for each spatiotemporal LoD. The Spatial Abstract is formally defined as

follows.

Definition 5.2 (Spatial Abstract). Let M(P )γ be the set of granular syntheses indexed by

each spatiotemporal granule. Thus, a function FSpatial : (M(P )γ )→ ASpatial produces an

abstract for each temporal granule such that ASpatial = {(t, A) | t∈T}.

A Spatial Abstract is a summary based on M(P )γ for each t ∈ T . It allows us to

look at the evolution of a summary over time, which is measuring a spatial feature of a
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Figure 5.8: The intuition of the Spatial Abstract.

phenomenon. For example, spatial statistics can be used in order to understand the spatial

distribution of events in each temporal granule. This way, a user can assess whether the

events occurred in a dispersed form or if they happened in a clustered manner. This

might be particularly useful to capture the temporal non-stationary of spatiotemporal

events.

As the Spatial Abstract allows one to look at a summary over time, we introduce

the Temporal Abstract to look at a summary over space. In this case, a summary for

each spatial granule is computed as illustrated in Figure 5.9. Two examples of Temporal

Abstracts were provided in Figure 5.6, in which the occupation rate was computed. The

Temporal Abstract is formally defined as follows.

Figure 5.9: The intuition of the Temporal Abstract.

Definition 5.3 (Temporal Abstract). Let M(P )γ be the set of granular syntheses indexed

by each spatiotemporal granule. Thus, a function FT emporal : (M(P )γ )→ AT emporal pro-

duces an abstract for each spatial granule such that AT emporal = {(s, A) | s∈S}.

A Temporal Abstract is a summary based on M(P )γ for each s ∈ S. It allows us to look

at a summary over space, which is measuring a temporal feature of a phenomenon. For

example, temporal statistics can be used so that we are able to understand the temporal

distribution of events in each spatial granule. This way, for each spatial granule, one can

assess if events occurring on a particular spatial granule are close or dispersed to each

other in time.
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Moreover, each Spatial (or Temporal) Abstract can be further summarized into a single

summary that we called Compacted Spatial (or Temporal) Abstract.

Definition 5.4 (Compacted Spatial Abstract). Let ASpatial be a Spatial Abstract. Thus,

a function FCompactSpatial :
(
ASpatial

)
→ ACompactSpatial produces a Compacted Spatial Ab-

stract such that ACompactSpatial is one abstract A.

For each Spatial Abstract (i.e., time series) displayed in Figure 5.5, we can use an

aggregation measure, like the average, to produce a Compacted Spatial Abstract. Other

methods that come from descriptive statistics or methods to analyze time series can be

used to build Compacted Spatial Abstracts.

Definition 5.5 (Compacted Temporal Abstract). Let AT emporal be a Temporal Abstract.

Thus, a function FCompactT emporal :
(
AT emporal

)
→ ACompactT emporal produces a Compacted

Spatial Abstract such that ACompactT emporal is one abstract A.

For each Temporal Abstract (i.e., map) displayed in Figure 5.6, we can also use an

aggregation like the average to produce a Compacted Temporal Abstract. Other methods

that come from descriptive statistics or spatial statistics can be used to produce Com-

pacted Temporal Abstracts.

To wrap up all the types of abstracts proposed, there is an example displayed in Figure

5.10. This example assumes a spatial granularity with 16 spatial granules (4x4) and a

temporal granularity with four temporal granules (i.e., a particular spatiotemporal LoD).

Thus, we have 16x4 spatiotemporal granules that are marked with one when they were

occupied by some atom.

Within the "red" area, the occupation rate is displayed as global abstract which con-

sists of the value 17.2. The occupation rate as spatial abstract is displayed within the

"purple" area as well as its average (i.e., compact spatial abstract). Finally, the occupa-

tion rate as temporal abstract is displayed within the "blue" area as well as its average

(i.e., compact temporal abstract).

5.3 Properties of Abstracts Functions

Abstracts are built through functions. Each function will measure one feature of the

phenomenon which in turn can employ different strategies using different information

from the model M(P )γ . Bearing this in mind, we identified three properties that

can further characterize the function that computes an abstract. These properties

describe the way each spatiotemporal granule contributes to the Abstract computa-

tion, i.e., the way each η = st →
{(

((space, fα(..., s, ...)) ,
(
time, fβ(..., t, ...)

)
, args

)
/f r

}
is

integrated for the resulting abstract. They are: (i) neighborhood dependency; (ii) spa-

tiotemporal dependency; (iii) semantic dependency. These properties are further detailed.
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Figure 5.10: Summary of all Types of Abstracts.

Neighborhood dependency. The contribution of each η for the Abstract depends (or

not) on the spatiotemporal neighborhood. This neighborhood dependency may be only

temporal (e.g., depends only on the events that happen on their neighbor temporal gran-

ules); only spatial (e.g., depends only on the events that happen on their neighbor spatial

granules); or may be both spatial and temporal-dependent. For instance, popular meth-

ods that measure spatiotemporal interaction like Knox and Bartlett 1964, Mantel 1967,

Jacquez 1996 k Nearest Neighbor can be used as global abstracts that are spatial and

temporal-dependent.

When an Abstract computation is not dependent then the computation of F (
{
η
}
),

where η = st →
{
((space, fα(..., s, ...)) ,

(
time, fβ(..., t, ...)

)
, args)/f r

}
, can be rewritten

as F (
{
η
}
) = AggF (

{
F′ (η)

}
), where F′ computes the contribution of each η and

AggF aggregates those contributions to get the final Abstract. This means that

F′ can be a function of local computation not requiring information about others η.

Spatiotemporal dependency: the contribution of each η for the Abstract depends (or not)

on the specific spatiotemporal granules st = (s, t) of η. This spatiotemporal dependency

may be only temporal (e.g. the contribution is different if the events happened at night

or during the day, or even varying with the season); only spatial (e.g., the contribution

is different if the events happened at high mountains or at sea level, or even varying

according to the spatial granule like the specific counties); or may be both spatial and

temporal dependent.
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When an Abstract computation is not spatiotemporal dependent then the computa-

tion of F (
{
η
}
), where η = st →

{
((space, fα(..., s, ...)) ,

(
time, fβ(..., t, ...)

)
, args)/f r

}
, can be

rewritten. Consider η′ as η′ = st→ {event(args)/f r} where we removed the information

about space and time and leave the set {event(args)/f r} indexed by st just to keep any

neighborhood information between spatiotemporal granules. Then, F (
{
η
}
) = F (

{
η′

}
).

When an Abstract computation is neither spatiotemporal dependent nor neigh-

borhood dependent, F (
{
η
}
), it can be rewritten as F (

{
η
}
) = AggF (

{
F′ (

{
η′

}
)
}
), where

F′ computes the contribution of each set
{
η′

}
independently of their spatiotem-

poral location and AggF aggregates those contributions to get the final Abstract.

Semantic dependency: the contribution of each η for the Abstract depends (or not)

on the semantic arguments of η. When the Abstract is not semantic dependent then

η = st →
{
((space, fα(..., s, ...)) ,

(
time, fβ(..., t, ...)

)
, args)/f

}
can be simplified to η = st →

{event((space, fα(..., s, ...)) , (time, β(..., t, ...)))/f r}. For instance, if we are studying car ac-

cidents, an Abstract semantic dependent will consider the type of accident and/or the

number of victims, while an Abstract semantic independent only considers the number

of accidents.

When an Abstract computation is neither spatiotemporal dependent nor neighbor-

hood dependent nor semantic- dependent, F (
{
η
}
), it can be rewritten as F (

{
η
}
) =

AggF ({F′ ({f r})}), where F′ computes the contribution of each bag {f r}, and AggF ag-

gregate those contributions to get the final Abstract. The occupation rate is an extreme

example of such Abstract and can be defined based on: F′ (
{
η
}
) = if

∣∣∣{η}∣∣∣ > 0 then 1 else 0:

AggF ({x}) =
∑
x

|S × T |
(5.2)

5.4 Discussion

Our framework allows us to define or use many functions available in the literature that

create summaries of data.

As presented, the functions computing abstracts may be semantic dependent. Such

dependency is delimited by the predicate’s signature regarding the arguments args. These

arguments depend on the phenomenon itself. In the case of car accidents, one may collect

information about the number of victims, whether some of the drivers present an alcoholic

rate above the legally allowed, information about weather conditions, among others. A

function computing an abstract can use this information. For instance, one can compute

the occupation rate by weather conditions as Global Abstract; or we can use the Global

Moran’s I Moran 1950 to build a Spatial Abstract that measures the correlation between

spatiotemporal granules and the weather conditions.

Furthermore, the functions producing abstracts may be spatial and/or temporal de-

pendent. In case of dependency, it is important to have a base knowledge for each spatial

and temporal granule and that base knowledge should be relevant for the phenomenon
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in study. Some examples to describe a temporal granule are: the time of day that each

temporal granule occurs (e.g., night or day), what kind of season it is in. The spatial

granules can be characterized, for instance, as information about altitude, if is a rural or

urban area.

Moreover, the functions computing abstracts may be neighborhood dependent. This

dependency can make the functions more time-consuming when compared with the

neighborhood independent ones. Some examples are given: (i) Gabriel et al. Gabriel et al.

2013 estimators or the average nearest neighbor index Ebdon 1985 can be used as Global

Abstracts in order to measure the spatiotemporal clustering/regularity of spatiotemporal

granules; (ii) the average nearest neighbor index Ebdon 1985 can also be used as Spa-

tial Abstract computing for each temporal granule a clustering measure which might

indicate variations between dispersed and clustered spatial distributions; alternatively,

it may reveal constant dispersed or clustered distributions; (iii) Keogh et al Keogh et al.

2005 propose an algorithm to find the most unusual subsequence within a time series,

which can be used as Temporal Abstract. Such abstract is computed by a function tem-

poral neighborhood dependent; (iv) based on the Fourier discrete transform, a function

may compute a Temporal Abstract returning the n higher frequencies. Such function is

temporal neighborhood dependent.

In the absence of the neighborhood dependency, functions making abstracts can work

individually for each spatiotemporal granule as discussed. For this reason, parallel com-

puting techniques can be employed.

Finally, the functions computing abstracts may be used in different abstracts holding

different properties and sometimes they depend on the phenomena in study. However,

it is fundamental that those functions provide comparable abstracts. By comparable

abstracts, we mean abstracts that are not completely sensitive to the spatiotemporal

LoD at which the abstract is being computed. For example, the occupation rate is an

example of an abstract that is influenced by the size of the spatiotemporal granules as it

was observed in Figure 5.4. Therefore, little information can be extracted from it as the

value of the occupation rate will likely growth as long as coarser spatiotemporal LoDs are

considered.

Ultimately, we aim to support users carrying inspection and comparison tasks of a

phenomenon across multiple LoDs. To this end, comparable abstracts are advised to

allow a fair comparison among phenomenon’s LoDs.

5.5 Main Abstracts Implemented

Several abstracts were implemented and actually proposed in the context of this work.

Whenever some abstract is based on another work a reference will be placed. By default,

i.e., if nothing was said you can assume that it was proposed in this work. A subset of

abstracts implemented/proposed are described:
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1. The Occupation rate measures the percentage of spatiotemporal granules occupied,

that is, measures the average density of a model at a given LoD. The value 0 means

no spatiotemporal granules are occupied and 100 means that all spatiotemporal

granules are occupied.

2. The Collision rate measures the percentage of the spatiotemporal granules occu-

pied that index more than one atom, that is, it measures the average co-occurrence

of a model at a given LoD. In this case, 0 means no co-occurrence of granular syn-

theses on spatiotemporal granules and 100 means that any granular synthesis is

co-occurring at least with another one.

3. The Granular Mantel Bounded and Normalized (GMBN) measures the spatiotem-

poral interaction among granular syntheses. The purpose of this measure is to have

a hint of the presence or absence of spatiotemporal clustering pattern or any other

pattern that involves spatiotemporal interaction like the contagious process. The

value ranges between 0 and 1 where 0 means no interaction at all among the gran-

ular syntheses and 1 means that all the granular syntheses are interacting among

each other’s. The GMBN receives as input parameters the spatial and temporal

distances. These distances are expressed in terms of granular extents with respect

to the spatiotemporal LoD in which the GMBN is computed. Both parameters were

fixed with the value two. For example, if the GMBN is being computed at the spa-

tiotemporal LoD (Raster(41.74km2),Days) the spatial distance will be 13 km (i.e.,

twice the sqrt(41.74)) and the temporal distance will be 2 days. This abstract is

a contribution to handle some limitations found on popular methods to measure

spatiotemporal interaction like Knox and Bartlett 1964, Mantel 1967, Jacquez 1996

k Nearest Neighbor. A more detailed discussion about GMBN is provided in Ap-

pendix D.

Spatial Abstracts hold a summary for each temporal granule about the granular syn-

theses occurred on it. The Spatial Abstracts considered are:

1. The Spatial occupation rate is computed in the scope of each temporal granule.

The values’ interpretation is similar to the one presented considering the global

abstract. This way, we can track the temporal evolution of the occupation rate.

2. The Spatial frequency rate measures for each temporal granule the percentage

of atoms occurred on it given all the atoms of the phenomenon at a given LoD.

In other words, corresponds to a frequency distribution normalized by the total

number of atoms in the phenomenon at particular LoD. The range of values for

this abstract lies between 0 and 1 (in each temporal granule) so that 0 means that

no atom occurred on that temporal granule while 1 means all the atoms occurred

on that temporal granule. Through this abstract, we aim to understand how the
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intensity of the phenomenon spreads out throughout time. This is abstract is not a

novel contribution.

3. The Spatial average nearest neighbor (Spatial ANN) measures how granular syn-

theses are dispersed or clustered in each temporal granule. This might indicate

variations between dispersed and clustered spatial distributions. The value com-

puted is not a distance but a normalized value such that if the value is less than 1,

the spatial pattern might be clustering while if the value is greater than 1, the trend

is toward dispersion. Notice that, the z-score2 of the Spatial ANN is also computed.

Very low or very high z-score values suggest some spatial pattern, and therefore, we

can reject the complete spatial randomness. This abstract was developed based on

Ebdon 1985.

4. The Spatial scope measures the percentage of spatial area occupied by the phe-

nomenon in each temporal granule, where the spatial area is a concave region that

encloses all the granular syntheses, and the total spatial area corresponds to the

extent of the spatial granularity. Through this abstract, we aim to understand if the

spatial scope of the phenomenon varies throughout time.

5. The next Spatial Abstract, considers two consecutive temporal granules ti−1, ti . For

each one, a region that encloses all granular syntheses is computed. Then, the

centroids of each region are computed, and the value of the Spatial Abstract at ti
consists of the distance between the centroid at ti−1 and the centroid at ti . This

is done for all temporal granules apart from t0 where the Spatial Abstract takes

the value 0. We call this Spatial Abstract as the Spatial Consecutive Distance

Between Centers of Mass. Through this abstract, we aim to understand whether

the phenomenon moves in space throughout time. This abstract is a contribution

of this work, and to the best of our knowledge, similar statistics were not found in

the literature.

6. Another way of understanding how the phenomenon moves in space throughout

time is to project the centroid’s coordinates of the region that encloses all granular

syntheses (in each temporal granule) into a one-dimensional domain. One way of

doing such a measure is as follows. Let’s consider the minimum bounding box that

encloses the extent of the spatial granularity so that the upper left corner corre-

sponds to the 0 value and the bottom-right corner corresponds to the 1 value. The

value goes from 0 to 1 as long as we move in space from top to bottom and left to

right. Therefore, for each temporal granule, the centroid’s coordinates of the region

that encloses all granular syntheses are projected between 0 and 1 following the

mentioned mapping. We call this Spatial Abstract as the Spatial Center Mass’s

Positioning. This abstract is a contribution of this work, and to the best of our

knowledge, similar statistics were not found in the literature.
2http://mathworld.wolfram.com/z-Score.html
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Temporal Abstracts hold a summary for each spatial granule about the granular syn-

theses occurred considering all temporal scope. The Temporal Abstracts considered are:

1. The Temporal occupation rate is, in this case, computed in the scope of each spatial

granule. The values’ interpretation is similar to the one presented considering the

Occupation rate. This way, we can assess the occupation rate over the space.

2. The Temporal frequency rate measures for each spatial granule the percentage of

atoms occurred on it given all the atoms of the phenomenon at a given LoD. The

range of values for this abstract lies between 0 and 1 (in each spatial granule) so

that 0 means that no atom occurred on that spatial granule while 1 means all the

atoms occurred on that spatial granule. This way, we can observe the intensity of

the phenomenon over the space.

3. A Temporal Abstract Temporal average nearest neighbor measures how granular

syntheses are dispersed or clustered in time for each spatial granule. The interpre-

tation of values is similar to the one presented in the case of the Spatial average

nearest neighbor. Furthermore, the corresponding z-score was also implemented.

4. A Temporal Abstract Temporal center mass’s positioning was also implemented.

Given the temporal granularity underlying the computation of this abstract, 0

means that all the granular syntheses occurred on the "first" temporal granule and

1 means that all the granular syntheses occurred the "last" temporal granule. This

measure can provide hints about the relation among spatial granules and the time

that the events occurred on it.

Finally, Compact Spatial Abstracts and Compact Temporal Abstracts were also con-

sidered. For each Spatial Abstract, the average and the coefficient of variation3 were

implemented as Compact Spatial Abstracts. The same was done for each Temporal Ab-

stract that result in Compact Temporal Abstracts.

Furthermore, a Compact Temporal Abstract measuring the spatial autocorrelation

of each temporal abstract was implemented. This was done by adapting the Pearson’s

Correlation Coefficient into the spatial context, and therefore, the value falls in the range

of -1 to +1, where being close to -1 indicates strong spatial negative correlation, +1 means

strong spatial positive correlation and 0 indicates no spatial correlation.

5.6 Related Works and their Limitations

This Chapter presents the SUITE framework to support users in carrying the inspection

and comparison tasks of a phenomenon across multiple LoDs, without having to look

3The coefficient of variation is a measure of spread that describes the amount of variability relative to
the mean. Because the coefficient of variation is unitless, you can use it instead of the standard deviation to
compare the spread of data sets that have different units or different means.
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at raw data, and to handle the spatiotemporal complexity. As our framework does not

make any assumption about the phenomenon and the analytical task, it can be widely

used to get an overview of the phenomenon under analysis. To the best of our knowl-

edge, there are no approaches that work across several spatial and temporal LoDs, and

that are independent of the analytical task and the domain, applicable in the context of

spatiotemporal events.

Even so, there are approaches to make analyses over spatiotemporal events. In general,

standard practices provide tools and approaches that work on a single LoD driven by the

user. Geovisualization, automated and visual analytics approaches fit this description

(see Section 2.4). However, the LoD plays a crucial role during the analytical process and,

often, there is no exclusive LoD to analyze a phenomenon.

Furthermore, those approaches revealed other issues. Usually, applications make use

of geovisualization methods to display raw spatiotemporal events. Such an approach

makes the perception of patterns in spatiotemporal events challenging, from the human

viewpoint, as the users have to handle the spatiotemporal complexity. On the other

hand, the automated approaches focused on a particular pattern, and still, effective vi-

sualizations need to be used to communicate externally the pattern identified. From

our viewpoint, such approaches should be used when there is evidence of those patterns

and not at early stages of analysis when little is known about phenomena. Besides, sev-

eral spatiotemporal patterns may occur in a phenomenon and some of them may be

strongly related. Focusing on a particular one can make us miss other patterns that may

be present on the data. Recently, visual analytics approaches have been proposed but

they are frequently focused on clustering tasks or employ common statistics that do not

handle spatiotemporal unique properties of spatiotemporal events.

Spatial and spatiotemporal statistics are developing quantitative analytical methods

that provide hints about possible patterns in spatiotemporal events, which can be easily

perceived by the end user. However, there was no framework formally defined to frame

their computation at several LoDs. With this work, one can have a high-level overview of

phenomena at multiple LoDs, simultaneously, something that was no archived so far.
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6
Experiments and Results

A Visual Analytics tool was developed, implementing the granularities-based model as

well as the SUITE framework in order to enhance the exploratory analysis of spatiotem-

poral events. The tool is called SUITE-VA and its architecture, technologies, and interface

are presented in Section 6.1. The experiments and results are reported in Section 6.2.

We established five types of abstracts working with space and time together in order

to measure different facets of phenomena logged through spatiotemporal events. These

abstracts are anchored on a theoretical framework that frame the computation of abstracts

at different LoDs. Phenomena are modeled through the event predicate that require the

space and time arguments and each abstract is computed for each spatiotemporal LoD.

Since the same abstract can be observed in different spatiotemporal LoDs, one can observe

the way abstracts vary according to the LoD, and therefore, in what LoDs facets are better

perceived.

A particular facet might reflect a pattern per se, or it may be revealed by the joint

interpretation of several abstracts. As the framework proposed does not make any as-

sumptions about the phenomenon and the analytical task, it can be widely used to get an

overview about the presence or absence of different patterns across LoDs.

The SUITE-VA allows us to visually inspect the abstracts in order to understand the

absence or presence of different kinds of spatiotemporal patterns at multiple LoDs, si-

multaneously, following a coordinated strategy among the visualizations provided. The

SUITE-VA is detailed as follows.

6.1 SUITE-VA Tool

SUITE-VA is a web-based tool and follows a client-server architecture. The server is coded

in Java providing a set of RESTful Web services (Spring). It relies on the PostgreSQL as
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the Database Management System, and its spatial extension PostGis. The browser-based

client is coded in JavaScript, HTML5, and uses WebGL to display efficiently thematic

maps.

SUITE-VA is composed by three-modules decoupled from each other: (i) Granularities-

based module; (ii) SUITE module; (iii) Interface module. The granularities-based and

SUITE modules are placed on the server-side while the interface module is placed on

the client-side. Furthermore, the granularities-based and SUITE modules are decoupled

from the RESTful Web Service. The application server provides a set of services that

are implemented using the interfaces exposed by the granularities-based and the SUITE

modules. These will be later used by the interface module. An overview diagram for the

SUITE-VA architecture is provided in Figure 6.1.

Figure 6.1: The SUITE-VA tool architecture.

The Granularities-based module receives as input a dataset of spatiotemporal events
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and a predicate signature compliant with the event signature presented in Chapter 5,

and then it automatically generates the set of atoms for each LoD of the corresponding

predicate. The set of LoDs Levent is inferred based on the granularities defined for each

argument and the relationship f iner than that exists between them.

The Granularities Manager manages granularities. The information about each gran-

ularity is stored in the database like the name, the long name, the short name, the extent,

the number of granules as well as the set of granules or the meta-information needed to

know the set of granules (i.e., in case of the all granules being regular). Each granularity

can be loaded in-memory, and when loaded, it becomes a Java object with a set of func-

tions, namely, one might access to a granule’s extent based on its index value, or to check

whether the granularity is finer-than another.

The Predicate module receives information about the arguments as well as the corre-

sponding valid granularities and function symbols. Based on the valid granularities, it

produces automatically the set of LoDs available. Afterward, it encodes the spatiotempo-

ral events at the base LoD, and then, the data can be generalized for all the LoDs available.

But if a user wants to just generalize the data for a particular LoD in order to export them

later on onto a CSV file, it is also possible. Each LoD of the phenomenon is stored on

a table of the database. In our implementation, the generalization occurs from the base

LoD to a target LoD. Our implementation supports the generalization of the granular

terms proposed.

During the generalization’s computation, local summaries associated to each spa-

tiotemporal granule are built. For example, the number of spatiotemporal events, the

number of distinct atoms, among others. These are used by the abstracts’ functions (in

the SUITE module) in order to take advantage of the computation already performed

when they are executed. Also, database indexes (spatial and nonspatial) are created to

improve query execution time. Although the generalization occurs before the user is

interacting with data, special attention to the performance was needed, especially during

the computation of abstracts in the SUITE module as discussed later.

The tool was tested on datasets up to 1 million events. For datasets with 50.000 events

the generalization from the based LoD to a target LoD takes around 30 seconds, which

include the generalization of the actual data, the creation of auxiliary tables, and the

creation of spatial and non-spatial indexes. For datasets with 1.000.000 events it takes

around 30 minutes. Notice that, the times here exposed did not result from an exhaustive

evaluation but rather they are just approximate times that provide a grasp about the time

the tool takes to perform the task.

The SUITE module receives the predicate signature and meta-information about the

function symbols implemented to compute abstracts. For each function defined, the

computation of all the available LoDs is made. The abstracts computed for each LoD of

the event predicate are stored persistently. In this module, the local summaries and the

indexes created have an important role.

As an example, the Granular Mantel Bounded and Normalized (GMBN) requires, for
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each granular synthesis, the computation of its neighbors within a spatial and temporal

distance. Thus, let’s say that we have a dataset of half a million events and 20 spatiotem-

poral LoDs. In some LoDs, the computation of the GMBN will require near a half million

neighborhoods operations. Performing that operation for all LoDs can be time-consuming

and without any indexes, it might take a few days to be completed. For this reason, some

extra attention to performance was needed in spite of the abstracts being precomputed.

In our implementation, in datasets containing around 30.000 events, the computation

of GMBN for a single LoD takes less than 20 seconds while in datasets of half a million

events it takes about less than 30 minutes.

The SUITE module follows the abstract factory design pattern, and therefore, there

is a factory for each type of abstract proposed. This way, new abstracts’ functions can

easily be added, since the SUITE-VA was developed in a modular way. In the end, one

just needs to define a new Java Class. The functions developed to generate abstracts are

listed in Appendix C. In short, we implemented 5 Global Abstracts, 16 Spatial Abstracts,

6 Temporal Abstracts. From the 16 Spatial Abstracts result 32 Compact Spatial Abstracts

(Average and Coefficient of Variation) and from the 6 Temporal Abstracts result 18 Com-

pact Temporal Abstracts (Average, Coefficient of Variation and Spatial autocorrelation).

The Visual Analytics Interface module receives the predicate signature. This infor-

mation is used by the Data Manager to retrieve the set of abstracts precomputed for each

spatiotemporal LoD. The Visualization Manager receives the abstracts’ values for each

spatiotemporal LoD that are turned into visualizations. This module keeps track of the

visualizations being displayed.

As we follow a coordinated strategy among the visualizations provided, the Event

Manager handles the events triggered by the user interactions on the visualizations dis-

played. Then, the actions needed to keep the visualizations coordinated are triggered.

Moreover, a filter on one visualization may result on a filter on another visualization. This

kind of events are also handled.

To turn the actual abstracts’ values into visualizations, the Gisplay (Cardoso et al.

2017) and the Highcharts Javascripts APIs were used. Other visualizations like the matrix

plots were implemented. The interface is composed of three main areas as displayed In

Figure 6.3:

1. Global Abstracts Area (Figure 6.3-1): Global Abstracts, Compact Spatial Abstracts

and Compact Temporal Abstracts are being coded into matrix plots. There is a ma-

trix plot for each abstract. In our implementation, the value of these abstracts are

real-values (as opposed to matrices or vectors). This way, one cell shows the value

of an Abstract in a certain spatiotemporal LoD. One matrix shows the value of an

Abstract for all the available LoDs. Blue shows low values while the green and yel-

low ones show high values. In the rows, we have the spatial granularities declared

as valid for the argument space (bottom-up: from finer to coarser granularities),

and in the columns, we have the temporal granularities declared as valid for the
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argument time (left-right: from finer to coarser granularities). The skeleton of a

matrix plot is displayed in Figure 6.2.

Figure 6.2: An overview of the structure of a matrix plot.

Recall that, the Compact Spatial Abstracts are abstracts computed from the Spatial

Abstracts whereas Compact Temporal Abstracts are the abstracts computed from

the Temporal Abstracts. Therefore, the symbol points out a Compact Spatial

Abstract while the symbol indicates a Compact Temporal Abstract. When none

of these icons is present it means that we are before a global abstract.

For example, in Figure 6.3, there are three matrices highlighted. The matrix c

displays the Global Abstract - Occupation rate. The matrix a displays the Compact

Spatial Abstract - Average of Spatial occupation rate. Finally, the matrix b shows

the Compact Temporal Abstract - Average of Temporal occupation rate.

2. Dynamic Abstract Area (Figure 6.3-2): This area can be used to show Global Ab-

stracts, Spatial Abstracts and Temporal Abstracts. In Figure 6.3, the same Global

Abstracts that are in the Global Abstracts Area are being displayed but using a

Parallel Coordinate. Each line corresponds to one spatiotemporal LoD, and each

coordinate corresponds to an Abstract.

When a matrix has the symbol it indicates a Compact Spatial Abstract. As

mentioned, the Dynamic Abstract Area can also be used to show other types of

abstracts, namely Spatial Abstracts. In Figure 6.4, two types of Spatial Abstracts are

being displayed. On the left side, the Spatial occupation rate and on the right-side,

the Spatial collision rate. The matrix highlighted as a (see Figure 6.4) refers the

Compact Spatial Abstract - Average of Spatial occupation rate. Therefore, one cell

in that matrix (i.e., one spatiotemporal LoD) can be detailed in one Spatial Abstract

(i.e, one time-series). Because there are four cells highlighted, there are four Spatial

Abstracts displayed on the left-side of the Dynamic Abstract Area.
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When a matrix has the symbol it indicates a Compact Temporal Abstract. For ex-

ample, in Figure 6.5, the matrix referred as a shows the Compact Temporal Abstract

- Average of Temporal occupation rate. Therefore, one cell in that matrix (i.e., one

spatiotemporal LoD) can be detailed into one Temporal Abstract (i.e, one thematic

map). Because there are two cells highlighted, there are two Temporal Abstracts

displayed in the Dynamic Abstract Area. Notice that, when the spatiotemporal LoD

has a raster granularity, the map represents each spatial granule through a point,

leading to a dot map (e.g., the map on the right side). Otherwise, the spatial gran-

ules are displayed in their original form which leads to a Choropleth map (e.g., the

map on the left side).

3. Phenomena Representation (Figure 6.3-3): This area is used to display spatiotem-

poral events at a particular spatiotemporal LoD. The slider underneath allows to

scroll temporally through the data, for each temporal granule, according to the spa-

tiotemporal LoD that was chosen. Therefore, on the map, the number of events for

each spatiotemporal granule is displayed through a thematic map. A dot map when

the spatiotemporal LoD contains a raster granularity is displayed or a Choropleth

map, otherwise. For example, in Figure 6.3, the Phenomena Representation area is

displaying the data at the spatiotemporal LoD - Counties,W eeks.

Figure 6.3: An overview of the SUITE prototype’s interface.

SUITE is designed to help users in the detection and analysis of patterns within

spatiotemporal events at multiple spatiotemporal LoDs. Our interface is thus composed

of three main areas as presented. These areas follow a coordinated strategy among the

visualizations provided. Coordinated views have been used to facilitate visualization

(Weaver 2010). This method encourages understanding by facilitating data exploration

through linked visualizations via user interaction. That is, the visualizations are not being

used only to show information but also to serve as an interaction mechanism with other
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Figure 6.4: An overview of the SUITE prototype’s interface with Spatial Abstracts.

Figure 6.5: An overview of the SUITE prototype’s interface with Temporal Abstracts.

views. Some videos regarding the SUITE-VA are available at http://staresearch.net/

ricardo-silva-may-2017/.

The design of SUITE is intended to follow the VA Mantra: "Analyze first, show the
important, zoom, filter and analyze further, details on demand" (Keim et al. 2008). First

of all, the abstracts are precomputed and then, the interface starts by displaying global

abstracts across spatiotemporal LoDs that may provide hints about different facets or

patterns within spatiotemporal events. Then, one can analyze further by looking at

Spatial or Temporal Abstracts. Finally, at any moment of the analyzes, one can check the

reason behind some abstracts’ values by visually inspecting the actual representation of

the phenomenon at a particular LoD.

The prototype presented was used on synthetic and real datasets. The Abstracts
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used to explore such datasets were presented in Section 5.5. The entire list of abstracts

implemented can be seen in Appendix C.

6.2 Experiments on Synthetic Datasets

To produce synthetic datasets of spatiotemporal events, a configurable generator of spa-

tiotemporal events was used. developed by (Gabriel et al. 2013) - R package (stpp). Using

it, synthetic datasets were generated.

Stpp package allows us to simulate spatiotemporal point processes which in practice

means spatiotemporal events where the event’s spatial shape is a point. The spatiotempo-

ral point processes are generated within a polygon and a single closed interval.

Gabriel et al. 2013 exposes a set of functions in order to simulate spatiotemporal

events following different models (Møller and Ghorbani 2010; Gabriel et al. 2013; Gabriel

2014):

1. Homogeneous Poisson Process: the homogeneous Poisson process is the simplest

mechanism for the simulation of a spatiotemporal point pattern. This model hardly

approaches a pattern in a phenomenon but provides a good basis for comparison

as it reflects complete spatiotemporal randomness. Informally, in a homogenous

Poisson process, the events form an independent random sample from the uniform

distribution on the spatiotemporal domain in which the events were simulated.

2. Poisson Cluster Process: the Poisson cluster process simulates spatiotemporal clus-

ters of events. This model might reflect phenomena such as forest fires where several

wildfire occurrences appear close in time and space, or the presence of spatiotempo-

ral hotspots of crimes, for instance. Informally, a set of parents are generated, and

afterward, a set of events are generated around each simulated parent. The disper-

sion of events in space and in time around each parent event is an input parameter

through which we specify the spatiotemporal LoD. In this process, when events

happen they occur near to each other in space and time. However, it is possible that

no events occur.

3. Contagious Process: A contagious process can be pictured out as a cloud of events

moving in space throughout time. the contagion process of a disease, for example,

in which the disease is transmitted to other people through direct contact with

an infected person. Informally, an initial event is generated, and afterward, the

next events are generated near to locations of the previous event(s) simulated. The

spatial and temporal neighboorhoods on which the next events are generated are

input parameters through which we specify the spatiotemporal LoD.

4. Log-Gaussian Cox Process: The Log-Gaussian Cox process simulates spatiotempo-

ral events such that some regions reveal higher intensity. This model might reflect
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phenomena that contain geographic regions of higher risk, which might changes

slowly over time. This pattern might happen with wildfires, infectious diseases,

among others. Informally, the Log-Gaussian Cox process is a inhomogeneous Pois-

son process with a stochastic (i.e., randomly determined) intensity. In this case, we

have no precise control of the spatiotemporal LoD in which the patterm is simu-

lated.

Different datasets were produced following one or more of the models presented.

The set of datasets simulated are displayed in Table 6.1 along with their characteristics

like the model used to generate it, the number of events in it, and last but not least, the

spatiotemporal LoD in which the pattern/model was simulated1. All the datasets were

generated within the region of the USA and during one year.

The datasets were modelled using the granularities-based model, and then, the SUITE

prototype was used to make analyses over them based on the Abstracts detailed in Section

5.5. The results are reported below.

6.2.1 Poisson Cluster Process

Let’s start by the Dataset 2. This dataset was simulated with the Poisson Cluster process

and is composed by 30.000 events within the region of the USA that occurred during one

year. The clusters of events are built around a parent within a spatial distance of 110 km

and a temporal distance of one day.

The dataset was modeled through a synthetic predicate, with two arguments

synthetic(space, time). The granular term required to model these events was only the

identity function symbol.

Regarding Dataset 2, the most detailed spatial granularity Raster
(
0.16km2

)
is based

on grid of 16384 x 16384 cells that cover the analyzed spatial extent of the phenomenon,

and each cell has an area of 0.16 km2. The coarser spatial granularities were obtained by

dividing by a factor of 4 the number of cells in the grid. So the valid granularities for

1The code to simulate the datasets and the actual datasets are available in the repository http://github.

com/RFASilva/SimulatedDataSets

Table 6.1: Datasets of spatiotemporal events simulated.

Model
Number
Events

LoD

Dataset 1 Homogenous 30.000 NA
Dataset 2 Poisson Cluster 30.000 110 Km, Day
Dataset 3 Poisson Cluster 30.000 2 Km, Week
Dataset 4 Poisson Cluster + Homogenous 33.000 110 Km, Day
Dataset 5 Poisson Cluster 30.000 570 Km, Week
Dataset 6 Contagious 5.000 110 Km, Week
Dataset 7 Log-Gaussian Cox 15.000 NA
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space were rasters with cell sizes approximately of 0.16 km2, 2.55 km2, 41.74 km2. The

granularities Counties and States were also included. The time granularities used were

Hours, Days, Weeks, Months.

The raw data (events) were encoded at the base LoD of the synthetic predicate, which

includes the time granularity Hours and the space granularity Raster
(
0.16km2

)
. After

that, the granularities-based module was used to automatically produce the data for all

LoDs of the synthetic predicate and the SUITE module was used to precompute all the

abstracts defined for each LoD. Using the Interface module, our analyses started by

looking at global abstracts. Figure 6.6 shows the global abstracts (i.e., the Occupation

rate, the Collision rate and the GMBN) for all the spatiotemporal LoDs of Dataset 2. For

the sake of simplification, spatiotemporal LoD will be written as LoDst in the following

sections.

Figure 6.6: Global Abstracts: GMBN, Occupation rate and Collision rate describing
Dataset 2.

The GMBN points to the LoDst - (Raster(41.74km2), Days) as the one with greatest spa-

tiotemporal interaction. This seems to be compliant with the LoDst in which the pattern

was simulated. Regarding the other global abstracts (i.e., the Occupation rate, and the

Collision rate), their values increases as long as we move to coarser LoDsst. This happens

because as long as we move to coarser LoDsst, the co-occurrence of granular syntheses in

spatiotemporal granules increase, once the number of spatiotemporal granules available

at coarser LoDsst decreases. Nevertheless, according to the phenomenon, the values of

Occupation rate and Collision rate might increase at different rates.

In order to better understand in what LoDsst the perception of the phenomenon distin-

guishes itself, we use an instrument from the interface module that allows us to correlate

two global abstracts.

We have implemented two forms of observing the correlation between two global ab-

stracts. One of them is called correlation evolution through spatial granularities, which

allows to observe for each spatial granularity how the correlation behaves, considering

all the temporal granularities. The other is called correlation evolution through tem-

poral granularities, which allows us to observe for each temporal granularity how the

correlation behaves with respect to all the spatial granularities.
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Figure 6.7a illustrates the correlation evolution through spatial granularities between

the GMBN and the Collision rate. Each spatial granularity gives origin to a series in the

chart. On the other hand, Figure 6.7b illustrates the correlation evolution through tem-

poral granularities between the GMBN and the Collision rate. In this case, each temporal

granularity gives origin to a series in the chart. The color encodes the spatial granularity

while the shape of the markers encodes the temporal granularity. This encoding scheme

is the same on both forms of correlation. Therefore, a marker with a particular color and

shape represents the same spatiotemporal LoD on both charts.

Moreover, in the correlation evolution through spatial granularities the lines connect

markers with the same color (i.e., the spatial granularity is the same) while in the correla-

tion evolution through temporal granularities the lines connect markers with the same

shape (i.e., the temporal granularity is the same). Notice that, both charts might become

cluttered according to the data that are being mapped. To attenuate that problem, a user

can hide or make visible series of the chart interacting with the legend.

Figure 6.7: Correlation between the GMBN and the Collision rate.

On both charts we can observe "elbows". An elbow tip, in these charts, has a particu-

larity that it might be interesting to explore. For the discussion that follows, let’s assume

that an elbow is created by going from a finer granularity to a coarser granularity (e.g., as

happens in the series regarding the spatial granularity Raster(40,74km2) in Figure 6.7a.

In these cases, it seems that there is a granularity G such that: (i) for granularities finer

than G the correlation seems to be positive; (ii) for granularities coarser than G the corre-

lation seems to be negative. This might be a hint about the LoDs in which the perception

of a phenomenon distinguishes itself, considering the two global abstracts at study.

In Figure 6.7a, an elbow is visible taking into account the spatial granularity

Raster(40,74km2), where the elbow tip is reached at the granularity Days. In Figure

6.7b, the elbow most pronounced is revealed at the temporal granularity Days where the
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elbow tip is reached at the granularity Raster(40,74km2).

Therefore, the LoDst - (Raster(40,74km2), Days) is where the elbow tip is observed

on both charts. This conclusion is similar to the one achieved by just looking at the

GMBN, in Figure 6.6, and this analysis might seem useless. However, looking at only one

Global Abstract as a way of understanding suitable LoDsst to detail our analyses might

be misleading. These scenarios will be discussed later.

The correlation between the GMBN and the Collision rate serves two purposes. First,

there is one more hint pointing to (Raster(40,74km2), Day) as a suitable LoDst to analyze

the data. Second, it allows us to introduce the correlation charts.

Given the evidences pointing that there might be a pattern in the LoDst -

(Raster(40,74km2), Day), or at least the phenomenon is observable in such LoDst, we

use the Phenomenon Representation area to have a grasp of the data at such LoDst. The

data at three different temporal granules chosen without any particular criterion are dis-

played in Figure 6.8. As you can see, there are clusters of events happening over the

USA.

Figure 6.8: Dataset 2 at the spatiotemporal LoD Raster(41.77 km2) and Days displayed in
three temporal granules.

The analysis made so far points out that the Dataset 2 might have a spatiotemporal

pattern and such pattern might be better perceived at (Raster(40,74km2),Days). The

pattern in question are clusters of events happening over time.

Our analyses were further detailed using the Spatial and the Temporal Abstracts in

order to confirm a pattern in the LoDst - (Raster(40,74km2),Days).

We start by looking to the Temporal Abstract - Temporal Center Mass’s Positioning

for three LoDsst as can be seen in Figure 6.9. The LoDsst are: (Raster(40,74km2),Days)

(Counties,Days) and (States,Days). Orange means that most of the events that occurred

in the spatial granule were old while dark blue means that most of the events occurred in

the spatial granule were recent in what concerns the extent of the temporal granularity.

Looking at the LoDsst - (Raster(40,74km2),Days) and (Counties,Days), in Figure 6.9,
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the geographic regions where the clusters of events have happened can be identified,

since spatial granules close to each other have similar values of the Temporal center

mass’s positioning. In other words, the events occurring near in space seems to occur

near in time.

The previous conclusions are also captured by the two Compact Temporal Abstracts

of the Temporal center mass’s positioning, i.e., its Coefficient of Variation and its Spa-

tial autocorrelation. In this case, the coefficient of variation tells us in what LoDsst the

value of the Temporal Center Mass’s Positioning varies more among the spatial granules

while the Spatial autocorrelation measures how the value of the Temporal Center Mass’s

Positioning is similar in neighboring spatial granules. Thus, we are interested in LoDsst
such that there is a considerable variation and the spatial autocorrelation’s value suggests

spatial correlation. In what concerns the three LoDsst displayed in Figure 6.9, the LoDsst
- (Raster(40,74km2),Days) is where the Coefficient of Variation and the Spatial autocorre-

lation take the highest values as detailed in Figure 6.9. The spatial autocorrelation is 0.94

(strong positive correlation) and the coefficient of variation is 0.64. Clusters are spread

out across the entire USA. Besides that, we can relate the geographic regions and the time

moments in which the clusters occurred. This kind of perception is lost if you look at the

data in the LoDsst - (States,Days) (see Figure 6.9), for example.

Figure 6.9: The Temporal Center Mass’s Positioning for three LoDsst.

Since clusters are happening over time, we use the Compact Spatial Abstract - Spatial
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average nearest neighbor (Spatial ANN) and its z-score in order to understand when those

clusters of events are happening.

Four LoDsst were chosen: (Raster(40,74km2),Hours), (Raster(40,74km2),Days),

(Raster(40,74km2),W eek), (Raster(40,74km2),Month). These were chosen because we

know, based on evidence, that the LoDsst - (Raster(40,74km2),Days) is appropriate to

analyze the data. So, the LoDsst - (Raster(40,74km2),Days) is included in the next analy-

sis. This leaves us with the possibility of varying the spatial or the temporal granularity.

But the previous analysis allows to note that the spatial granularity Raster(40,74km2)

was able to show the places where the clusters happened. For this reason, we vary the

temporal granularity.

The Spatial Abstracts are displayed in Figure 6.10. Notice that, the set of time series

for each Temporal Abstract share the extremes of the Y axes. Besides that, the color of a

time series is given by the color used on the corresponding Compact Spatial Abstract (i.e.,

matrix plot).

Figure 6.10: The Spatial Average nearest neighbor and its z-score in four LoDsst.

Recall that, if the value of the Spatial ANN is less than 1, the trend is toward spatial

clustering while if the value is greater than 1, the trend is toward dispersion. Very low

or very high z-score values suggest some spatial pattern, and therefore, we can reject the

complete spatial randomness.

Based on Figure 6.10, the Spatial Abstracts revealed a clustered phenomenon over

time, since the average of the Spatial ANN values points to clusters of events throughout

time. In the LoDst - (Raster(40,74km2),Hours) we can observe variations between a clus-

tered and a non clustered phenomenon. But in the remaining LoDsst, the phenomenon

reveals to be quite stable and clustered because the values of the Spatial ANN are con-

stantly close to zero and the corresponding z-scores are quite negative (i.e., the z-score is

not close to zero).
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As these two Spatial Abstracts complement each other, we plot them in a scatter plot,

using the interface (a click on the right-side buttons displayed in Figure 6.10). These

scatter plots are displayed in Figure 6.11. Notice that, the extremes on both axes are

relative to the LoDst shown.

Each point in a scatter plot shows the values of the two Spatial Abstracts that occurred

at a particular temporal granule. Therefore, the number of points in a scatter plot is equal

to the number of temporal granules in the temporal granularity that composes the LoDst
being displayed.

Figure 6.11: The Spatial ANN and its Z-score displayed in four LoDsst.

At the LoDst - (Raster(40,74km2),Hours) - bottom-right, there are many points hold-

ing a value close to zero of the Spatial ANN, and their z-scores are not so negative as

the ones in the others LoDsst. Looking at the LoDst - (Raster(40,74km2),Month), it seems

that the phenomenon is always clustered (i.e., the values of Spatial ANN are close to zero

and their z-scores quite negative). Finally, regarding the LoDst - (Raster(40,74km2),Day)

and LoDst - (Raster(40,74km2),W eeks) seems to be the LoDsst that better fit the Poisson

Cluster process. Recall that, in a Poisson Cluster process, events occur near other events

but there are a few times where no events occur. This is visible in the scatter plots of the

LoDst - (Raster(40,74km2),Day) and LoDst - (Raster(40,74km2),W eeks), once the majority

of the points have the values of the Spatial ANN close to zero and their z-scores are quite

negative. However, there are also points where the values of the Spatial ANN are close to

zero and their z-scores are positive (no clustering) and also there are points with values

of the Spatial ANN that are far from zero (no clustering).

In short, the analysis made over Dataset 2 that contains a Poisson cluster process
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simulated with clusters of events dispersed within 110 km and one day around their

parents was:

• We use the matrix plots to analyze the GMBN, Occupation rate and Collision rate.

Here, the GMBN pointed to the LoDst - (Raster(40,74km2),Days)

• We correlate the GMBN and Collision rate using the correlation of evolution

through spatial granularities and through temporal granularities. Again, the LoDst
- (Raster(40,74km2),Days) was suggested.

• We used the phenomenon representation area to have an overview of the phe-

nomenon at LoDst - (Raster(40,74km2),Days) in three temporal granules chosen

without any particular criterion. Clusters of events were observed.

• The Temporal Abstract - Temporal Center Mass’s Positioning was studied in three

different LoDs. Furthermore, two Compact Temporal Abstracts were also analyzed:

Coefficient of variation and the spatial autocorrelation. Here, the LoDst suggested

was also LoDst - (Raster(40,74km2),Days) if one wants to understand in what pe-

riods of time clusters of events occur in certain geographic regions. It was also

possible to observe that the clusters are spread out over the entire area of the USA.

• The Spatial Abstracts - Spatial average nearest neighbor (Spatial ANN) and its z-

score was used in order to understand not only when the clusters are happening but

also what LoDst better fits the Poisson Cluster process. The analysis suggested that

clusters are distributed throughout the one "year" in which data was simulated. Fi-

nally, the analysis suggests that the LoDst that better fits the Poisson Cluster process

is LoDst - (Raster(40,74km2),Days) or LoDst - (Raster(40,74km2),W eeks).

Other datasets were simulated following the Poisson cluster model - the Datasets 3, 4

and 5. These datasets were simulated within the USA boundaries over a year. In Dataset

3, each cluster of events was built around a parent within a spatial distance of 2 km

and a temporal distance of one week. Dataset 4 is similar to Dataset 2 but contains an

additional 3.000 events following a homogenous model. These 3.000 events are spread

out over the same period of the 30.000 events that follow the Poisson Cluster model.

Finally, in Dataset 5, each cluster of events was built around a parent within a spatial

distance of 570 km and a temporal distance of one week. In the following analysis, we

also add Dataset 1 that was simulated with the Homogeneous model.

The datasets described were also modeled using the synthetic predicate with similar

valid granularities. All the granularities are equal with respect to the previous demonstra-

tion case except for the Raster granularities. This occurs because the mininum bounding

box made by the events of the phenomenon might change from one dataset to another.

Nevertheless, the most detailed spatial granularity is based on a grid of 16384 x 16384
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cells and the other coarser spatial granularities were obtained by dividing the grid by a

factor of 4.

Datasets 1, 3, 4, 5 will be discussed more briefly. That is to say, we will only discuss

whether the SUITE-VA points to suitable LoDs to detail our analyses once the "detailed"

analyses would be similar to the ones made over Dataset 2. Furthermore, a comparison

between the abstracts’ values obtained by a Poisson Cluster dataset or a Homogenous

dataset is made.

Figure 6.12 shows the global abstracts for all spatiotemporal LoDs of datasets 1, 3, 4

and 5. First of all, the Occupation rate follows a similar pattern in all datasets. Dataset 3

stands out from the others regarding the Collision rate. This occurs because the clusters

in Dataset 3 were simulated within a spatial distance of 2 km, and were thus much

more spatially clustered than in the other datasets. As a result, the collision among

granular syntheses starts to occur "sooner", i.e., in finer LoDsst when compared to the

other datasets.

Figure 6.12: Global Abstracts regarding Dataset 1, 3, 4, 5.

As to Dataset 3, the GMBN highlights the following LoDsst: (i) (Raster(0.1km2),Days);

(ii) (Raster(0.1km2),W eeks); (iii) (Raster(1.6km2),Days); (iv) (Raster(1.6km2),W eeks). In

this case, the values of spatiotemporal interaction are similar among the four LoDsst,
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and therefore, any of the LoDsst highlighted is potentially suitable to detail our analyzes.

Nevertheless, the LoDsst - (Raster(1.6km2),W eeks) is the LoDst that better approaches the

LoDst in which the data was simulated, once each cluster of events was simulated around

a parent within a spatial distance of 2 km and a temporal distance of one week.

Dataset 4 is similar to Dataset 1, complemented by a homogenous process. In this case,

the GMBN suggest the LoDst - (Raster(41.49km2),Days), which is the LoDst that better

approaches the LoDst in which the pattern is simulated, once each cluster of events was

simulated around a parent within a spatial distance of 110 km and a temporal distance

of one day.

Nevertheless, a single Global Abstract should not be used in order to immediately

guide our analyses for one or more LoDsst. So far, we have been using four global abstracts

in order to have a grasp of the data. From these four abstracts, one is neighborhood

dependent (GMBN) and the remaining ones are not (Occupation rate, Reduction rate)

(check Section 5.3 for abstracts’ properties). In other words, only the GMBN captures in

their computation the spatiotemporal dynamics of events. Therefore, restricting ourselves

to just one global abstract that looks for spatiotemporal patterns or properties of the

spatiotemporal interaction might wrongly suggest one or more LoDsst as demonstrated

below.

In Dataset 5, the GMBN highlights the following LoDsst: (i) (Counties,Hours); (ii)
(Counties,Days). However, each cluster of events was simulated around a parent within

a spatial distance of 570 km and a temporal distance of one week.

The problem is that the events within a cluster are spatially "dispersed" (570 km) and

the GMBN is not capable of capturing such situation. But even worse, in Dataset 1, the

LoDsst - (Counties,Days) and (Counties,W eeks) are pointed as potential LoDsst in which

there might be spatiotemporal interaction. However, this dataset was generated following

a Homogenous model. This kind of scenarios can be easily discarded when we analyze

several Global Abstracts that are looking for spatiotemporal patterns, or Global Abstracts

with Compact Spatial Abstracts, or Global Abstracts with Compact Temporal Abstracts,

or even all together.

To illustrate the previous idea, we analyzed the correlation between the GMBN and

the Average of the Spatial ANN (Compact Spatial Abstract) for the different datasets as

displayed in Figure 6.13.

Let’s consider Dataset 1 that is the one with the Homogenous process. The correlation

charts shows that when the GMBN reaches its maximum value, the value of the Average

of the Spatial ANN is much greater than 1 (squared orange marker). Therefore, this

phenomenon follows hardly a clustered pattern over time because in that case the value

of the Average Spatial ANN would be closer to 0, something that did not happen in any

LoDst as the minimum value achieved was 0.8.

In Dataset 3, we have a clear hint about the LoDsst where the pattern was simulated

because when the GMBN reaches its maximum value the Average of the Spatial ANN

is close to zero (diamond green marker), as opposed to what happens in Dataset 1 (see

122



6.2. EXPERIMENTS ON SYNTHETIC DATASETS

Figure 6.13: Correlation between the GMBN and the Average of the Spatial ANN (Com-
pact Spatial Abstract).
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Figure 6.13).

Looking at Dataset 4, the most pronounced elbow tip in the chart on the left (yellow

square marker) corresponds to the LoDst - (Raster(41.49km2),Days). This LoDst is the

one that better approaches the LoDst in which the pattern was simulated, because each

cluster of events was simulated around a parent within a spatial distance of 110 km and

a temporal distance of one day. Despite the fact that GMBN reaches it’s maximum in the

yellow square LoDst - (Raster(41.49km2),Days), the value for the Average of Spatial ANN

is 0.5 which makes the hint weaker than in the case of Dataset 3. However, this gives us a

clue for the right LoDst.

Regarding Dataset 5, we do not have a clear hint about the LoDsst in which the data

should be analyzed. Recall that, in this dataset, each cluster of events was simulated

around a parent within a spatial distance of 570 km and a temporal distance of one

week. So, the events are not that clustered. Therefore, the pattern is not so pronounced

when compared with the other datasets. That being said, when the GMBN reaches its

maximum value the Average of the Spatial ANN is not close to zero (square and circle

orange markers - the LoDst - (Counties,Hours) and (Counties,Days)). This result has

similarities with Dataset 1 - Homogeneous process. However, in this case, two elbow tips

are observed (i.e., LoDsst) that are not so pronounced but the Average Spatial ANN is close

to zero. These correspond to the LoDst - (Raster(41.77km2),W eeks) (i.e., the diamond

yellow marker) and (Raster(41.77km2),Months) (i.e., the triangle yellow marker). In this

case, the SUITE-VA provide a hint about two LoDsst such that one of them (i.e., LoDst -

(Raster(41.77km2),W eeks)) may be appropriate to detail further analyzes.

The previous analysis would not be as clear for an user that is unfamiliar with the

abstracts implemented as well as the interpretation of the visualizations provided. This

relates to the learning curve concept. As a user is gaining more experience with the

SUITE-VA, the understanding about the concepts involved will also become clearer.

A final remark about the interpretation of the correlation charts. The elbow tips

provide a change from a positive to a negative (or vice-versa) correlation that might

be interesting to explore. Nevertheless, there might be LoDst of interest that do not

correspond to elbow tips. Yet, according to the values that they hold for the abstracts at

study, they might be also interesting to explore as in Dataset 5.

6.2.2 Contagious Process

Dataset 6 was simulated following the contagious process. The dataset was simulated

within the USA boundaries over a year and is composed of 5.000 events. Based on an

initial event, the next ones are generated within a spatial distance of 110 km and a tem-

poral distance of a week. Furthermore, the dataset was modeled through the synthetic

predicate. In this case, the most detailed spatial granularity Raster
(
0.05km2

)
is based on

grid of 16384 x 16384 cells that cover the analyzed spatial extent of the phenomenon, and

each cell has an area of 0.05 km2. The other coarser spatial granularities were obtained
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by dividing the number of cells in the grid by a factor of 4. So the valid granularities

for space were rasters with cell sizes approximately of 0.05 km2, 0.8 km2, 12.5 km2. The

granularities Counties and States were also included. The time granularities used were

Hours, Days, Weeks, Months.

To start our analysis we chose: (i) the GMBN; (ii) the Average of Spatial ANN; (iii)
the Average of the z-score of the Spatial ANN; (iv) the Average of Temporal ANN; (v) the

Average of the z-score of the Temporal ANN. The first three abstracts were already used

so we skipped more explanations. In what concerns the Temporal ANN, for each spatial

granule, in a given LoDsst, how the granular syntheses are dispersed or clustered in time

is measured as detailed in Section 5.5.

The Parallel Coordinates was used to simultaneously analyze the global abstracts cho-

sen across all the LoDsst. In this case, we are interested in understanding LoDsst in which

(i) the phenomenon seems to be more clustered over time; (ii) the phenomenon seems

to be more clustered over space; (iii) the LoDsst where the spatiotemporal interaction of

events seems to be better perceived. To conduct such analysis, we filtered the Parallel

Coordinates in each coordinate.

This way, interactively, we just considered LoDsst with values below 0.4 (approxi-

mately) regarding the average of the Spatial ANN. For the average of its z-score, we just

considered values below -10 (approximately). Furthermore, values below 0.1 (approxi-

mately) with respect to the average of the temporal ANN were considered. For its z-score,

we considered values below -1. Finally, the top three values of the GMBN were considered,

which means values above 0.08. The results are displayed in Figure 6.14.

Figure 6.14: Overview about Dataset 6 using Global Abstracts, Compact Spatial Abstracts
and Compact Temporal Abstracts.

Three LoDsst were highlighted: (Raster(12.5km2),Days), (Raster(12.5km2),W eeks)

and (Raster(12.5km2),Months). Like it was done in Dataset 2, the Temporal Center Mass’s

Positioning was used in order to relate geographic regions with the center’s of mass of
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time at which events happened. This Temporal Abstract is displayed in Figure 6.16 for

the three LoDsst identified. Regardless of the LoDst, a grasp about the spatial path made

Figure 6.15: One Temporal Abstract at three different LoDsst.

by the simulated contagious process is visible, thus confirming a contagious process. Nev-

ertheless, in LoDst - (Raster(12.5km2),Days) is where the path made is slightly better

perceived.

Another experiment was made with two Spatial Abstracts: (i) the Spatial Scope; (ii)
the Spatial Consecutive Distance between Centers of Mass. The former abstract indicates

how much a phenomenon changes the size of its spatial extent over time while the latter

measure whether such spatial extent moves in space over time. For the LoDsst identified

initially, the Spatial Abstracts can be seen in Figure 6.16. Moreover, in the former abstract

the average value is displayed while in the latter the coefficient of variation is shown.

Let’s start by the Spatial Scope. In general, for the LoDsst identified, the phenomenon’s

spatial scope is quite stable throughout time with some variations here and there. How-

ever, the most stable LoDst is the LoDst - (Raster(12.5km2),Months).
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Figure 6.16: Two Spatial Abstracts about Dataset 6.

Regarding the Spatial Consecutive Distance between Centers of Mass, LoDst -

(Raster(12.5km2),Days) is where the distances between centers of mass seem to vary less

according to the coefficient of variation. Thus, if one is interested in understanding how

the contagious process evolved, in this simulated scenario, one should look at the LoDst
- (Raster(12.5km2),Days) because this is the LoDst that seems to capture the smoothest

transitions over time.

To conclude, in the Contagious process an initial event is generated, and then, the next

events are simulated within a specified spatial and temporal distance. The dataset under

analysis was generated with distances of 110 km and one week. The events generated

within neighborhood are uniformly distributed and they are not necessary at a distance

of a week. In fact, many of them might be at temporal distance less than a week. This

might explain why, in the LoDst - (Raster(12.5km2),Days), the Contagious process seems

to be better perceived.

6.2.3 Log-Gaussian Cox Process

Dataset 7 was simulated following the Log-Gaussian cox process. The dataset was simu-

lated within the USA boundaries over a year and is composed by 15.000 events. Therefore,

this dataset will show geographic regions of higher incidence of events over others.

Furthermore, the dataset was modeled through the synthetic predicate. In this case,

the most detailed spatial granularity Raster
(
0.16km2

)
is based on grid of 16384 x 16384

cells that cover the analyzed spatial extent of the phenomenon, and each cell has an area

of 0.16 km2. The remaining valid raster granularities for space were rasters with cell sizes

approximately of 2.57 km2, 41.27 km2. The granularities Counties and States were also

included. The time granularities used were Days, Weeks, Months.

As in Dataset 6 (Contagious process), we start by getting an overview of the set of

the following abstracts using the Parallel Coordinates: (i) the GMBN; (ii) the average

of Spatial ANN; (iii) the average of the z-score of the Spatial ANN; (iv) the average of

temporal ANN; (v) the average of the z-score of the temporal ANN. Looking at the Parallel

Coordinates:
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There are no LoDsst holding values close to zero with respect to Average Spatial ANN

containing quite negative z-scores. This kind of values suggest that we are not

dealing with the Poisson cluster process as events occur close to each other in space.

There are some LoDsst holding values close to zero with respect to Average Temporal

ANN but their z-scores are also close to zero. Also, for such cases, the spatiotemporal

interaction is weak when compared with other LoDsst. This kind of values suggests

that we are not dealing with the Contagious process as events occur close to each

other in space and in time.

Two LoDsst have the spatiotemporal interaction among events measured by the GMBN

above 0.4, which is similar to the values obtained in Poisson Cluster simulated

datasets. However, at this point, no particular meaning can be assigned to such

values.

Figure 6.17: Overview about Dataset 7 (Log-Gaussian cox process) using Global Abstracts,
Compact Spatial Abstracts and Compact Temporal Abstracts.

In Log-Gaussian Cox processes, we have geographic regions of higher incidence that

might change slowly over time. This way, there are geographic regions that distinguish

themselves from others in terms of the number of events that happened in there as well

as the geographic regions of higher incidence that might "infect" their neighbors.

Since Log-Gaussian Cox processes simulated geographic regions of higher incidence,

temporal abstracts might be useful. Hence, we chose the Temporal Frequency Rate that

measures for each spatial granule the percentage of atoms occurred on it given all the

atoms of the phenomenon at a given LoD.
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In order to capture the LoDsst where the Log-Gaussian Cox process is better perceived,

we correlate the Compact Temporal Abstract - Coefficient of variation and the Spatial au-

tocorrelation of the Temporal frequency rate as can be seen in Figure 6.18. These two

Compact Temporal Abstracts are chosen because, we want to capture the LoDsst in which

there is a considerable variation on the Temporal frequency rate, and simultaneously,

to understand whether the spatial granules are spatially correlated on the Temporal fre-

quency rate.

Figure 6.18: Dataset 7 (Log-Gaussian Cox process) - Correlation between the Coefficient
of Variation of Temporal Frequency Rate and the Spatial Autocorrelation of Temporal
Frequency Rate.

First of all, the temporal granularity does not have an impact on the Temporal Fre-

quency Rate. Regardless the temporal granularity, the percentage of atoms occurred on

particular spatial granules remains the same as can be observed on the left chart of Figure

6.18.

That being said, let’s focus on the right chart in Figure 6.18. In finer spatial granular-

ities, a spatial autocorrelation among spatial granules it is expected to exist, once their

values diverge little or nothing as shown by their coefficient of variation. But when we

look at the LoDsst - (Counties, W eek), the coefficient of variation is a value near to one,

which indicates variability among values, and simultaneously, the level of spatial auto-

correlation grows. But if we move to LoDsst - (States, W eek), the spatial autocorrelation

decreases.

To check the previous analysis, the Temporal Frequency Rate is shown in Figure 6.19

at the LoDsst - (Counties, W eek).

There are some counties (that are spatially small) on the east side of USA

(highlighted with a red arrow) that have a greater incidence of events. Such geo-

graphic area was zoomed-in and displayed at two LoDsst: (i) (Counties, W eek); (ii)

(Raster
(
41.27km2

)
, W eek) as shown in Figure 6.20.

Looking at the LoDsst - (Raster
(
41.27km2

)
, W eek) geographic regions with higher
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Figure 6.19: The Temporal Frequency Rate at the LoDsst - (Counties, W eek)

Figure 6.20: The Temporal Frequency Rate at the LoDst - (Raster
(
41.27km2

)
, W eek) and

(Counties, W eek).

incidence of events are no longer perceived. Although there are geographic regions with

higher incidence (purple and dark blue spatial granules), the values of Temporal Fre-

quency Rate are not different as they are in the LoDsst - (Counties, W eek). This confirms

that the LoDsst - (Counties, W eek) is probably one of the suitable LoDsst to better under-

stand the geographic regions that are most affected by the phenomenon.

6.3 Results on Real Datasets

Several phenomena were analyzed using the SUITE-VA. As opposed to synthetic datasets,

we are not aware of possible patterns that those phenomena might contain. The phenom-

ena collected were: (i) forest fires in Portugal; (ii) the dataset made public by the Armed
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Conflict Location and Event Data Project2 about conflict and protest data, occurring in

Africa; (iv) robberies in the city of Chicago; (iii). These datasets contain information about

different phenomena occurring in different spatial extents and different temporal extents.

6.3.1 Forest Fires in Portugal

This section shows the analysis made about wildfires that occurred in Portugal between

2001 and 2012. The granularities-based model was used in order to model them at differ-

ent LoDs. This phenomenon is described by a collection of 280.968 spatiotemporal events.

These events were modeled through the wildfires predicate containing two arguments

wildf ires(space, time).

The most detailed spatial granularity Raster
(
0.005km2

)
is based on grid of 16384x

16384 cells that cover the analyzed spatial extent of the phenomenon, and each cell has

an area of 0.005 km2.

The remaining raster granularities for space were granularities with cell sizes of 0.08

km2 and 0.319 km2. The granularities P arishes, Counties and Districts was also consid-

ered. The time granularities used were Hours, Days, Weeks, Months, Y ears.

The considered granular terms required to model these events were: Instant and Cell

for the time and space arguments, correspondingly. The raw data were encoded at the

base LoD of the wildfires predicate which includes the time granularity of Hours and the

space granularity Raster
(
0.005km2

)
.

Figure 6.21: Overview of wildfires in Portugal using Global Abstracts, Compact Spatial
Abstracts and Compact Temporal Abstracts.

In order to have a grasp of wildfires in Portugal, we chose the following abstracts: (i)
the GMBN; (ii) the average of Spatial ANN; (iii) the average of the z-score of the Spatial

2Website: http://www.acleddata.com/
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ANN; (iv) the average of Temporal ANN; (v) the average of the z-score of the Temporal

ANN. The Parallel Coordinates was used to simultaneously analyze the global abstracts

chosen across all the LoDsst. Let’s take a close look at them:

There are LoDsst holding values close to zero with respect to Average Spatial ANN that

simultaneously have quite negative values considering its z-score. Therefore, this

kind of values have some resemblances with the ones obtained with Poisson cluster

simulated datasets or the Contagious ones. As a result, at this point, we might say

that wildfires in Portugal hardly follow a homogenous model.

Several LoDsst are holding values close to zero with respect to Average Temporal ANN

but their z-scores are close to zero, which means that the complete randomness

cannot be rejected. In other words, wildfires occurring on the same spatial granule

are likely not close to each other in time, on average. Furthermore, this information

is telling us that probably, we are not dealing with a phenomenon that follows a

Contagious process.

Several LoDsst have the spatiotemporal interaction among events measured by the

GMBN above 0.4, which is similar to the values obtained in Poisson Cluster simu-

lated datasets. This reinforces the similarities of the wildfires in Portugal with the

Poisson Cluster model.

Based on the preliminary analysis, wildfires in Portugal seem to approach the Poisson

Cluster model. The Parallel Coordinates was filtered in order to identify the suitable

LoDsst to confirm the previous hypothesis. We just considered LoDsst with values below

0.25 (approximately) regarding the Average of the Spatial ANN. For the average of its

z-score, we just considered values below -20 (approximately). Finally, the top four values

of the GMBN were considered, which means values above 0.45 (approximately). The

other coordinates (temporal average nearest neighbor and its z-score) were not filtered

because there are no domain values that clearly points to clustered or dispersed events

in time. From the filtering conducted, four LoDsst were highlighted: (P arishes,Weeks),

(P arishes,Months), (P arishes,Y ears), (Counties,Months).

To better understand how wildfires, occur in space over time, the Spatial ANN and its

z-score were plotted in a scatter plot for the LoDsst identified previously as can be seen in

Figure 6.22. First of all, notice that, the charts obtained present similarities in the values

and corresponding "shapes" with the charts obtained when we studied Poisson Cluster

simulated datasets. Furthermore, in all LoDsst displayed, the phenomenon reveals to

have several clustered distributions of events over time.

Nevertheless, LoDsst - (P arishes,Weeks) (chart on the bottom-right) is the one that

better fits the Poisson Cluster process/model. That is, in general, events occur near one

another but there are a few times when events did not occur or occur in a dispersed

way. Furthermore, in the LoDsst - (P arishes,Weeks) there is a good tradeoff between
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the Spatial ANN and its z-score. In other words, there are many temporal granules in

which the Spatial ANN’s values are around 0.15 (trend toward clustering) and where their

z-scores are quite negative (confirmation of clustering).

Figure 6.22: The Spatial ANN and its Z-score displayed in four LoDsst.

The SUITE-VA allows users to zoom-in on a particular area of a scatter plot. When that

action is performed the selected points (i.e., temporal granules) are highlighted on the

corresponding time-series using vertical red lines. Thus, to understand when wildfires

are occurring spatially clustered, we zoom-in the scatter plot at LoDsst - (P arishes,Weeks)

over the area where the Spatial ANN is less than 0.2 and its z-score is less than -35. So,

we are choosing the temporal granules in which the events are more spatially clustered.

The result of this selection can be seen Figure 6.23.

The time series on the right-hand side is showing the entire temporal period at study.

From it, we can notice that the wildfires occurred recurrently spatially clustered which, in

general, matches the summer periods but not necessarily. For instance, during the week

that has started on November, 5th 2011, several wildfires occurred in Portugal. These are

displayed on the map of Figure 6.23, and it is possible to confirm that they are spatially

clustered.

6.3.2 Violence against Civilians in Africa

This section shows the analysis made over violence against civilians in Africa that oc-

curred between 1997 and 2015. The granularities-based model was used in order to

model them at different LoDs. This phenomenon is described by a collection of 33.393
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Figure 6.23: Filter the temporal granules in which the clusters of events are most pro-
nounced at LoDsst - (P arishes,Weeks).

spatiotemporal events. These events were modeled through a terrorism predicate, with

two arguments terrorism(space, time).

The most detailed spatial granularity Raster
(
343.45km2

)
is based on a grid of 16384

x 16384 cells that cover the analyzed spatial extent of the phenomenon, and each cell has

an area of 343.45 km2. The other coarser spatial granularities were obtained by dividing

the number of cells in the grid by a factor of 2. So the valid granularities for space were

rasters with cell sizes of 1376.34 km2, 5525.79 km2, and 22268.15 km2. The used time

granularities were Hours, Days, Weeks, Months, Y ears.

Like previously, we start by trying to figure out what kind of model might be underly-

ing this phenomenon using the usual abstracts: (i) the GMBN; (ii) the Average of Spatial

ANN; (iii) the Average of the z-score of the Spatial ANN; (iv) the Average of Temporal

ANN; (v) the Average of the z-score of the Temporal ANN. The Parallel Coordinates are

displayed in Figure 6.24.

There are "four levels" of spatial clustering over time as depicted by the Average Spatial

ANN and the corresponding z-scores. These levels are being strongly influenced by

the temporal granularity. With the granularity Y ears, the Average Spatial ANN and

the corresponding z-scores reach their minimums while with the granularity Days

the spatial clustering over time is not so pronounced. Thus, the phenomenon seems

to have some similarities to the Poisson Cluster model.

Several LoDsst are holding values close to zero with respect to Average Temporal ANN

but their z-scores are also close to zero, which means that the complete randomness

cannot be rejected. In other words, the attacks against civilians occurring on the

same spatial granule are likely not close to each other in time, on average. Further-

more, this information is telling us likely, we are not dealing with a phenomenon
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Figure 6.24: Overview of the attacks against civilians in Africa using Global Abstracts,
Compact Spatial Abstracts and Compact Temporal Abstracts.

that follows a Contagious process. This is quite similar to the phenomenon about

Wildfires in Portugal.

There are some LoDsst that have the spatiotemporal interaction among events measured

by the GMBN above 0.3, which is similar to the datasets simulated with the Poisson

cluster or with the dataset about wildfires in Portugal.

Since the Average Spatial ANN and the corresponding z-scores reach their minimums,

we look to the data at the LoDsst - (Raster(22268.15 km2), Y ears) in three temporal gran-

ules: 2008, 2009, 2010. The temporal granules were chosen for no particular reason

but just to see if there were clusters of events based on the tip provided by the Parallel

Coordinates (see Figure 6.24).

As we can see in Figure 6.25, the spatiotemporal events are in fact spatially clustered.

In this case, there are clusters of events that remain stable in the three years chosen like

for example the cluster in Mozambique (green circle), South Nigeria (red circle), and on

the border between Uganda and Kenya (blue circle).

In our initial analysis about violence against civilians, the LoDsst containing the tem-

poral granularity Months also suggest some characteristics of the Poisson Cluster pro-

cess, and consequently, clusters of events over time. So, we have chosen the LoDsst -

(Raster(22268.15 km2), Months) for displaying the Spatial ANN and the corresponding

z-score. Afterward, we plot them in a scatter plot and filter out the temporal granules

where the values of Spatial ANN are low and the values of the z-score are more negative,

that is, the temporal granules where the clusters are likely most pronounced. This action

highlights the time series on the respective granules as displayed in Figure 6.26.

Surprisingly, only "recent" temporal granules were highlighted which means that

the attacks against civilians in Africa are getting more spatially clustered than in
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Figure 6.25: Violence against Civilians at the LoDsst - Raster(22268.15 km2), Y ears dis-
played in three temporal granules - 2008,2009 and 2010.

Figure 6.26: Highlighting the temporal granules where the Violence against Civilians is
more spatially clustered using the LoDsst - (Raster(22268.15 km2), Months).

136



6.3. RESULTS ON REAL DATASETS

the past. A more detailed analysis about this change can be done and the LoDsst -

(Raster(22268.15 km2), Months) seems suitable for such an analytical task.

Another experiment was made to understand whether the attacks against civilians

occur on the same regions over time or if there were changes. To conduct this analysis,

we have chosen the Temporal Center Mass’s Positioning. Since the spatial autocorrela-

tion of the Temporal Center Mass’s Positioning is most pronounced in LoDsst contain-

ing the spatial granularity Raster(343.45 km2), our analysis was detailed in the LoDsst -

Raster(343.45 km2), W eeks. Some results were displayed in Figure 6.27.

Figure 6.27: Violence against Civilians at the LoDsst - Raster(343.45 km2), W eeks dis-
played in three different spatial extents.

Clusters of events are changing over time. For instance, in Angola most of the attacks

occurred in the past and they are not that frequent anymore. The same is observed in Serra

Leoa. But for instance, at northern Algeria, the attacks have slightly changed location

over time from north-west to north-east. Looking at the north of Uganda (top right-hand

map), there is no particular pattern, that is, in each spatial granule there may be old and

recently attacks or the attacks happened somewhere in the middle of the period under

study (1997-2015). At Somalia, most attacks are recent and spread out by the entire

country.

In the case of Nigeria, we have used a feature of the SUITE-VA, which allows to hide

and show the events holding a particular class of values. In Figure 6.28, from left to right,

the classes were incrementally added to the map. As you can see, in the past, most attacks
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Figure 6.28: Evolution of Violence against Civilians throughout time at the LoDsst -
Raster(343.45 km2), Weeks in Nigeria.

occurred at the south of Nigeria, and afterward, they started to spread across the entire

country.

6.3.3 Robberies in Chicago

This section shows the analysis made over robberies that happened in the City of Chicago

and occurred between 2001 and 2015. The granularities-based model was used in order

to model them at different LoDs. This phenomenon is described by a collection of 221.625

spatiotemporal events. These events were modeled through a robberies predicate, with

two arguments robberies(space, time).

The most detailed spatial granularity Raster
(
0.002km2

)
is based on grid of 1024x

1024 cells that cover the analyzed spatial extent of the phenomenon, and each cell has an

area of 0.002 km2. The other coarser spatial granularities were obtained by dividing by a

factor of 2 the number of cells in the grid. So the valid granularities for space were rasters

with cell sizes of 0.007 km2, 0.027 km2. The granularity Chicago′s Community areas was

also considered. The time granularities used were Hours, Days, Weeks, Months, Y ears.

The considered granular terms required to model these events were: Instant and Cell

for the time and space arguments, correspondingly. The raw data were encoded at the

base LoD of the robberies predicate which includes the time granularity of Hours and

the space granularity Raster
(
0.007km2

)
.

Like previously, we start by trying to figure out what kind of model might be un-

derlying this phenomenon using the following abstracts: (i) the GMBN; (ii) the Average

of Spatial ANN; (iii) the Average of the z-score of the Spatial ANN; (iv) the Average of

Temporal ANN; (v) the Average of the z-score of the Temporal ANN.

The Parallel Coordinates are displayed in Figure 6.29. Based on it, we found the

following:

In what concerns the Average of Spatial ANN, the LoDst - (Raster(0.002 km2), Months)

(R1 M in Figure) holds the minimum value that corresponds to 0.51 (and its z-score

is -31.84). All the others LoDsst have a greater value of the Average of Spatial ANN,

and therefore, it seems that robberies in City of Chicago do not follow the Poisson

Cluster process.
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Figure 6.29: Overview about robberies in the City of Chicago using Global Abstracts,
Compact Spatial Abstracts and Compact Temporal Abstracts.

All the LoDsst are holding values above one with respect to Average Temporal ANN. In

other words, robberies occurring on the same spatial granule are likely not close

to each other in time, on average. Therefore, this phenomenon hardly follows a

Contagious process.

Looking at the GMBN, the LoDsst with higher values (around 0.5) are the ones that

have the granularity Communities (C in Figure). This is actually similar to the Log-

Gaussian Cox process discussed in Section 6.2.3. That is, a considerable evidence

of spatiotemporal interaction, and weak/no evidence of the Poisson Cluster and

Contagious process.

The previous analyzes make us look at the Temporal Abstract - Temporal Frequency

in order to understand if the phenomenon follows a Log-Gaussian Cox process, that is,

if there are communities areas with a higher incidence of robberies as pointed out by

the previous analysis. Notice that, there are 77 communities areas and if the robberies

had been distributed evenly then in each community area 1.3% robberies would have

happened in each community area (approximately).

Since the temporal granularity does not have an impact on the Temporal Frequency

Rate (as explained previously), then the Temporal Abstract - Temporal Frequency will be

the same in any LoDst containing the granularity Communities. Figure 6.30 displays the

Temporal Frequency at the LoDst - (Communities, Months).

There are in fact some communities areas with higher incidence of robberies that are

close to each other. Austin, Auburn Gresham and South Shore communities areas are the

ones with a higher incidence of robberies. In Austin 7% of all robberies happened, in

South Shore 3.9% and in Auburn Gresham 3.52%.
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Figure 6.30: The Temporal Frequency Rate at the LoDst - (Communites, Month).

Using the SUITE-VA, a user can detail a particular value of a Temporal Abstract by

clicking on the spatial granule that we want to detail (in the map). Such action will

show in the Phenomenon Representation area an interactive histogram that displays the

distribution of the number of events by temporal granules concerning only the spatial

granule selected.

In Figure 6.30, the spatial granule Austin was detailed. Interacting with the histogram,

we concluded that, in Austin, the months of October, September, December and January

are the months when the pikes normally happen.
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7
Conclusions and Future Work

This chapter closes the document. Section 7.1 summarizes the main contributions pre-

sented in the previous chapters while Section 7.2 discusses possible future work direc-

tions.

7.1 Conclusions

Many phenomena are being logged as spatiotemporal events at high levels of detail (LoDs),

allowing us to better understand natural phenomena or human activities occurring on the

surface of the Earth. Present-day visual analytics (VA) approaches targeting the analysis

of spatiotemporal events present two main issues.

In general, VA approaches support separate analyzes of the spatial and temporal di-

mensions of the events that can prevent us from discovering information in datasets of

spatiotemporal events. A typical form of analysis in such conditions is counting the num-

ber of events per day or per month. But a lot of information about the spatiotemporal

dynamics of events arises when one works with the spatial and temporal dimensions

together. An example of such an analysis is the computation of the spatiotemporal inter-

action level among spatiotemporal events.

Some of the VA approaches support analyzes that search for spatiotemporal patterns.

But such approaches are commonly developed for a particular application domain that

looks for a specific spatiotemporal pattern. In a way, those approaches assume the pre-

existence of the pattern thus probably leaving aside other patterns that might be discov-

ered. Furthermore, VA approaches follow an analysis approach based on a single LoD,

and therefore, the users have to choose the appropriate LoDs to perform the analysis of

the data. Thus, when there is little information about a spatiotemporal phenomenon, i.e.,

an early stage of analysis, the user does not only ignore what patterns might be on the
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data but also what is/are the suitable LoD(s) to find them. This led us to formulate the

following research question:

How can we help users explore phenomena logged as spatiotemporal events across
multiple LoDs, simultaneously, helping them to understand in what LoDs there are
patterns emerging?

To enhance the analyses over spatiotemporal events, we first propose to move from

a single user-driven LoD to a multiple LoDs analysis approach, providing the user with

an understandable high-level overview of the underlying structure of the phenomenon

for each LoD. This approach can provide several hints about the different facets of spa-

tiotemporal events that can provide a first insight on the presence or absence of patterns

at particular LoDs. Following this approach, we aimed to help users to detect very soon

in what LoDs there are potential patterns and what kind of patterns they are. According

to his analytical goal and domain knowledge, the user may be able to better guide his

analysis thus avoiding an information overload.

A long path was made to support analyses at multiple LoDs, simultaneously, over

spatiotemporal events. A natural requirement for that is the capability to represent and

reason about spatiotemporal events at different LoDs. To meet this need, this PhD thesis

contributes with a Theory of Granularities (ToG) that supports granularities defined

over any data domain covering the definitions proposed in the literature. The ToG pro-

posed introduces four induced relations in order to transpose the relations defined in the

domains of reference for granules belonging to granularities. None of the works discussed

in the literature can do that, as detailed in Section 3.

Although the ToG supports the creation of granularities over any data domain that

can be used to describe spatiotemporal events, we needed to model phenomena logged

as spatiotemporal events at several LoDs. To meet this need, a granular computing ap-

proach was proposed to model spatiotemporal phenomena at multiple LoDs, labeled as

the granularities-based model.

The granularities-based model lies on the concept of LoD which is a key contribution

of this work. The granularities-based model follows an automated approach to generalize

a phenomenon from one LoD to a coarser one. When changing a phenomenon’s LoD

a time interval can eventually be generalized to a time instant while a region might be

simplified. To the best of our knowledge, there is no other model like the one proposed

here as detailed in Section 4.5.

Granular terms are used in statements’ arguments that allow expressing abstract real

world entities in a granular way. Based on the general concept of granular term, spa-

tial granular terms (Cell and RasterRegion) and temporal granular terms (Instant and

Interval) were formalized. Regarding the latter, we transpose the temporal topological

relations to the temporal granular terms. A theoretical analysis was made for reason-

ing about what happens to the topological relations (in the context of temporal granular
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terms) when these are generalized. This work ends up being a complementary contribu-

tion because it extends a previous work as detailed in Appendix B.

Through the granularities-based model, there is a phenomenon’s representation for

each LoD. To provide a theoretical foundation that anchors analyses at multiple LoDs,

simultaneously, this PhD Thesis contributes with a framework for SUmmarizIng spa-

tioTemporal Events (SUITE). To the best of our knowledge, there are no approaches that

work across several spatial and temporal LoDs and that are independent of the application

domain in the context of spatiotemporal events as discussed in Section 5.6.

SUITE was developed on top of the granularities-based model and builds summaries,

at different LoDs, about phenomena logged as spatiotemporal events. The framework

establishes five types of summaries working with space and time together. This allows us

to frame and extend many proposals in the literature that create summaries of data in the

proposed framework. But also, it allows that new summaries are proposed. In this work,

we propose several new summaries that are detailed in Section 5.5. In particular, we

propose the Granular Mantel Bounded and Normalized in order to handle the difficulty

of existing spatiotemporal interaction methods on providing comparable values among

LoDs as discussed in Appendix D.

To conduct analyzes in this new mindset, a web-based VA tool anchored on the SUITE

framework was developed, designated by SUITE-VA. The tool allows to visually inspect

hints about the absence or presence of different kinds of spatiotemporal patterns at mul-

tiple LoDs, simultaneously, following a coordinated strategy among the visualizations

provided. To the best of our knowledge, there is no other prototype or application that

supports analyses over spatiotemporal events at multiple LoDs, simultaneously, following

the VA Mantra as detailed in Section 6.1.

The evaluation of our proposals was conducted with two types of datasets of spa-

tiotemporal events: (i) synthetic datasets; (ii) real datasets. Synthetic datasets with dif-

ferent spatiotemporal patterns (i.e., homogenous process, Poisson-cluster process, Conta-

gious process, Log-gaussian Cox process) in different spatiotemporal LoDs, with different

cardinality were produced. For most of the datasets produced, the SUITE-VA could pro-

vide a correct overview of the "phenomenon" allowing us to identify the LoD(s) in which

the pattern generated occurs, and therefore, the LoDs that should be used to detail the

analysis as detailed in Section 6.2.

We then look for the patterns/processes identified previously in real datasets. The

real datasets studied were: (i) forest fires in Portugal; (ii) violent attacks against civilians

occurring in Africa; (iii) and, robberies in the city of Chicago. Recognizing some of the

processes in these datasets, in different spatiotemporal LoDs, was easy.

Forest fires in Portugal have similarities with a Poisson-cluster model process, which

is better perceived at the spatiotemporal LoD P arishes,Weeks. Nevertheless, there is a

difference between the periods of time where the events happened in a dispersed form

and in a clustered way. In general, wildfires occurred in a clustered form during summer

seasons while they happened mainly in a dispersed form in the other seasons. Despite
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that, some temporal outliers were found like for example the week that has started on

November, 5th 2011 in which several wildfires occurred mainly in the north of Portugal

(see Section 6.3).

Similarly, violent attacks against civilians in Africa have similarities with a Poisson-

cluster process. In this case, the analysis suggests that the pattern is better perceived

in the spatiotemporal LoDs containing the temporal granularities Months or Y ears. In

such spatiotemporal LoDs more analyses were conducted and some findings are reported.

For example, in Angola most of the attacks occurred in the past and they are not very

frequent anymore. The same is observed in Serra Leone. But for instance, in north Algeria,

the location of the attacks has changed slightly over time from northwest to northeast.

Furthermore, a peculiar change has been detected in the phenomenon. It seems that,

globally, the attacks against civilians in Africa are getting more spatially clustered than

in the past as detailed in Section 6.3. This seems a relevant change that deserves a more

detailed analysis.

Finally, robberies in the City of Chicago have similarities with a Log-Gaussian Cox

Process, which is better perceived in the spatiotemporal LoDs containing the spatial gran-

ularity Communities Areas. Then, the spatiotemporal LoD Communities Areas, Months

was detailed. The community areas in Chicago which are more prone to robberies are

Austin, South Shore and Auburn Gresham.

From the experiments conducted and the results achieved, the SUITE-VA was able

not only to provide an overview of the presence or absence of different spatiotemporal

patterns but also suggest appropriate spatiotemporal LoDs that allow us to better perceive

the corresponding patterns. That being said, it is reasonable to state that this PhD thesis

enhanced the exploratory analysis of spatiotemporal events across multiple LoDs.

In Introduction 1.2 some questions were formulated that needed to be answered to

address the research problem identified in this PhD thesis.

1. How do we enable representation and reasoning about spatiotemporal events at

different LoDs? Using the Theory of Granularities.

Making analyses across multiple LoDs requires modeling spatiotemporal events at

different LoDs.

a) What is a LoD? How do we formalize the concept of LoD? A LoD is a set of

argument pairs and a valid granularity with respect to a predicate P .

b) How do we model a phenomenon at different LoDs?

Using the granularities-based model.

c) Datasets of spatiotemporal events are collected at high LoDs. How do we follow

a bottom-up automated approach in order to provide different phenomena’s

representations for each LoD?
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Each function symbol has its own generalization rules. Atoms’ granular

terms of the granularities-based model are automatically generalized based

on those rules.

2. With the datasets of spatiotemporal events available at multiple LoDs, we aim to

provide analyses across them.

a) How do we provide an understandable high-level overview about the underly-

ing structure of the phenomenon for each LoD?

Through the Abstracts proposed in the SUITE framework.

b) How will the users inspect and compare the phenomenon perception across

multiple LoDs?

Leveraging from the SUITE-VA which encodes the several abstracts imple-

mented and anchored by the SUITE framework into visualizations.

c) How do we provide an approach independent from the phenomenon without

focusing on a particular analytical task or pattern?

Our approach is independent of the application domain because the SUITE

lies on a granular computing approach (i.e., granularities-based model)

which is independent from the application domain.

Our approach does not focus on a particular analytical task or pattern as

the SUITE framework establishes five types of summaries working with

space and time that can be used to implement a function that measures any

facet or pattern of a phenomenon.

7.2 Future Work

Our research is focused on enhancing exploratory analysis of spatiotemporal events. To

accomplish that, we introduce a novel mindset that is devised to give an overview of

potential patterns that might be in the data, and simultaneously, tell what LoDs are

suitable to study them. Underlying the novel approach, the Theory of Granularities (ToG),

the granularities-based model, the SUITE framework, and the SUITE-VA were proposed.

In a way, this PhD thesis is not about a novel algorithm to look for a spatiotemporal

pattern, or a novel visualization method to improve the execution of a particular analysis,

or even a new data structure to compress spatiotemporal events in-memory in order

to improve performance. Hence, we envisage several research directions that can be

pursued as future work. These directions can be divided into theoretical foundations and

applicational.

In what concerns theoretical foundations, we envisaged three main topics to further

research:
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• The Theory of Granularities can be extended. In particular, the definition of gran-

ularities based on other granularities and the concept of evolution of granularity

should be considered.

• More work about topological relations between granular terms. On one hand, one

can study what happens to topological relations between spatial granular terms

proposed. On the other hand, this kind of studies can be generalized to account for

different granularities in which the granular terms are defined.

• Evaluate other approaches of generalization in the granularities-based model.

From the applicational point of view, heuristics to suggest automatically LoDs to

analyze the data are needed and should be a priority because if the number of abstracts

grows considerably it might be overwhelming to the user. This issue relates to the learning

curve. Each abstract looks for a feature or pattern which frequently is expressed in terms

of a range of values. According to the value, it means one thing or the other. Thus, a

user needs to get familiar with the abstracts and their interpretation. Requiring a user to

memorize all the abstracts and their interpretation might be overwhelming, specially if we

consider the joint interpretation of abstracts. So again, heuristics to suggest automatically

LoDs should be a priority.

Leading the automatism of the suggestion to the extreme, one might considers the

usage of supervised learning algorithms on labeled datasets (i.e., pattern and LoDs) to

train a model composed by N abstracts and M LoDs as a way of predicting the pattern

and the LoD based on the abstracts’ values.

Another research direction can be the development of new abstracts that measure

different spatiotemporal patterns or facets.

The tool does not make any parallel computation, that is, either the computation

responsible for the generalization of the phenomenon or the computation of abstracts

occurs on a single machine. The performance was not a concern of this PhD thesis. But

notice that, we are just dealing with the performance at pre-computation phase. This way,

a possible research direction is to consider NoSQL databases and employ parallel com-

puting techniques in order to avoid not only the pre-computation of the phenomenon’s

representation at a particular LoD but also the pre-computation of abstracts. Several

advantages might come from this. Such approach would mean that a user would be able

to filter the events by semantic attributes. Thus, a user would be able to identify different

patterns according to attributes’ values. Notice that, this is not completely solved in the lit-

erature. For instance, the work (Swedberg and Peuquet 2016) supports slices by semantic

attributes but their approach has good performance only up to 20.000 events (Swedberg

and Peuquet 2016). On the other hand, a user would be able to define granularities on

demand.
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To end, the analysis across LoDs introduced was employed on spatiotemporal events.

A similar research can be conducted but now for other application domains that require

other spatiotemporal datatypes, like trajectories for example.
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The induced Relationships: Properties

Consider the relation R in the domain D:

• Symmetric Relation: ∀x∀yR(x,y)→ R(y,x)

• Transitive Relation: ∀x∀y∀z((R(x,y)∧R(y,z))→ R(x,z))

• Antisymmetric Relation: ∀x∀yR(x,y)∧ x , y→¬R(y,x)

• Reflexive Relation: ∀x : xRx

Consider a granularity G defined over the domain D, and gi , gj ∈ G such that i ∈ E(gi) and

j ∈ E(gj ).

• Complete Relationship: gi RC gj ↔∀i∀j : R(i, j)

• Partial Relationship: gi RP gj ↔∃i∀j : R(i, j)∧∃j∀i : R(i, j)

• Weak Relationship: gi RW gj ↔∃i∀j : R(i, j)∨∃j∀i : R(i, j)

• Existential Relationship: gi RE gj ↔∃i∃j : R(i, j)

An antireflexive relation R induces an antireflexive complete relation RC The relation

RC is antisymmetric and transitive therefore the relation RC is also antireflexive.

A reflexive relation R induces a reflexive existential relation RE By a reflexive relation,

we get: ∀xxRx. By an existential relation, we get: ∃i : R(i, i). Naturally, the existential

relation is also reflexive.

An antireflexive relation R induces an antireflexive partial relation RP The relation RP

is antisymmetric and transitive therefore the relation RP is also antireflexive.

A antisymmetric relation R induces antisymmetric complete relation RC
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APPENDIX A. THE INDUCED RELATIONSHIPS: PROPERTIES

Figure A.1: An antisymmetric relation induces an antisymmetric complete relation.

Note that, we want to proof (gi RP gj)↔ (∀j∀i : R(j, i)). Through DeMorgan Laws we

have:

¬(∀j∀i : R(j, i))

(∃j∃i : ¬R(j, i))

A symmetric relation R induces symmetric a complete relation RC

Figure A.2: A symmetric relation induces a symmetric complete relation.

A symmetric relation R induces a symmetric existential relation RE

Figure A.3: A symmetric relation induces a symmetric existential relation.
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A symmetric relation R induces a symmetric partial relation RP

Figure A.4: A symmetric relation induces a symmetric partial relation.
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A symmetric relation R induces a symmetric weak relation RW

Figure A.5: A symmetric relation induces a symmetric weak relation.
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An antisymmetric relation R induces an antisymmetric partial relation RP

Figure A.6: An antisymmetric relation induces an antisymmetric partial relation.

Note that, we want to proof ¬(gjRP gi) ↔ ¬(∃j∀i : R(j, i) ∧ ∃i∀j : R(j, i)). Through

DeMorgans Laws we have:

¬(∃j∀i : R(j, i)∧∃i∀j : R(j, i))

(¬∃j∀i : R(j, i))∨ (¬∃i∀j : R(j, i))

(∀j∃i : ¬R(j, i))∨ (∀i∃j : ¬R(j, i))
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Topological Relations on Temporal

Granular Terms

In this appendix, we provide a detailed study about what happens to topological relations

between temporal granular terms when these are generalized for coarser LoDs.

Throughout the following discussion, the generalization of temporal granular terms

occurs between granularities related by the finer than relationship. The generalization of

temporal granular terms may affect the temporal topological relationships held between

pairs of atoms. On one hand, the type of relationship may change. For instance, we might

have a relation between two time intervals that may turn into a relation between a time

interval and a time instant. On the other hand, there are scenarios where the type of

topological is kept but the actual relation (e.g., before) is changed (e.g., to equal). An

overview of the possible transitions between types of topological relations is given in

Figure B.1.

We start by discuss the transition expressed by the scenario one. Consider the granu-

larities G and H such that G 4H as defined in in Figure B.2.

Let’s consider α = Interval(α−,α+) and β = Interval(β−,β+) be intervals of time

defined over a granularity G; and, let α′ = Interval(α′−,α′+) and β′ = Interval(β′−,β′+)

be intervals of time, generalized from α and β respectively, of a granularity H . The

relation between α′ and β′ may be the same relation verified by the intervals of time α

and β, or may be changed due to the generalization.

In the first place, when α is equal to β in any generalization scenario α′ will be equal to

β′. By definition, (α−=β−) ∧(α+=β+). Once the granularity G is finer than H then α− and

β− will be contained by the same granule of H , and the same applies to the granules α+

and β+. Thus, in any generalization scenario α′ will be equals to β′. The same reasoning

can be applied to the meet relation. Imagine that, α meets β. We know a prior that α+=β−.

Therefore, α+ and β− will be contained by the same granule of H . Consequently, in any
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Figure B.1: Example of two granularities related by the finer-than relationship.

Figure B.2: Possible transitions in the relationships between pairs of temporal terms.

generalization scenario, α′ will meet β′.

Furthermore, a general rule can be stated regarding the following relations: before,

overlaps, starts, during, and finishes. If the endpoints of α and β that are different before

generalization remain different in α′ and β′, i.e., after the generalization, then the relation

remain unchanged. Note that, G is finer thanH . Thus, when two different instants of time

of G are generalized for two different instants of H then the lesser complete relationship

<c [3] between them are kept. Consequently, the relation between α and β will remain

between α′ and β′.

Nevertheless, there are some scenarios in which the relation between two intervals of

time is changed due to the generalization of them. This issue is discussed below.

Suppose that, α occurs before β. If there is h ∈ H such that E (α+) ⊆ E (h)∧ E (β−) ⊆
E (h) then α′ will meet β′. For example, α = Interval(1,3) and β = Interval (5, 6) such

that α occurs before β. After the generalization we get: α′ = Interval(a,b) meets β′ =

Interval(b,c).

In case of α overlaps β then the relation between α
′

and β
′

can be changed to any

relation apart from the before and during relation. Consider that there are two granules

x,y ∈H such that E (α− ) ⊆ E (x )∧E (β− ) ⊆ E (x) ∧ E (α+ ) ⊆ E (y )∧E (β+ ) ⊆ E (y). In this

scenario, α
′

will be equals to β
′
. This can be illustrated by considering α = Interval(3,7)
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and β = Interval (4, 8). After the generalization we get: α′ = Interval(b,d) equals β′ =

Interval(b,d). However, if there is one granule h ∈H such that E (α+ ) ⊆ E (h )∧E (β− ) ⊆
E (h ) then α

′
will meet β

′
. For instance, if α = Interval(1,5) and β = Interval (3, 6) then

α
′

= Interval(a,b) meets β
′

= Interval(b,c). Now, if there are three granules h ∈ H such

that E (α− ) ⊆ E (h )∧E (β− ) ⊆ E (h ) then α
′

will start β
′
. For example, α = Interval(3,7)

overlaps β = Interval (5, 10) becomes α′ = Interval(b,d) starts β′ = Interval (b, e). But if

that granule exist such that E (α+ ) ⊆ E (h)∧E (β+ ) ⊆ E (h) then α
′

will be finished by β
′
.

For example, α = Interval(6,10) overlaps β = Interval (7, 11) becomes α′ = Interval(c,e)

is finished by β′ = Interval (d, e).

Let’s consider the scenario in which α starts β. If there is h ∈ H such that E (α+) ⊆
E (h)∧E (β+) ⊆ E (h) then α′ will become equal to β′.

Consider that α occurs during β. For this case, if there are two granules x,y ∈H such

that E (α− ) ⊆ E (x)∧E (β− ) ⊆ E (x ) ∧ E (α+ ) ⊆ E (y)∧E (β+ ) ⊆ E (y) then α
′
will be equals

to β
′
. Consider the following intervals: α = Interval(4,7) occurs during β = Interval (3, 8).

After the generalization α′ = Interval(b,d) is equal to β′ = Interval (b, d).

Nevertheless, if there are three granules h ∈H such that E (α− ) ⊆ E (h)∧E (β− ) ⊆ E (h )

then α
′

will start β
′
. For example, α = Interval(4,6) during β = Interval (3, 8) becomes

α′ = Interval(b,c) starts β′ = Interval (b, d). Contrary, if that granule exist such that

E (α+ ) ⊆ E (h) ∧ E (β+ ) ⊆ E (h) then α
′

will finish β
′
. For example, α = Interval(6,9)

during β = Interval (5, 10) becomes α′ = Interval(c,e) finishes β′ = Interval (b, e).

Finally, let’s assume α finishes β. In this case, if there is h ∈ H such that E (α−) ⊆
E (h) ∧ E (β−) ⊆ E (h) then α′ will become equal to β′. For example, α = Interval(2,5)

finishes β = Interval (1, 5) becomes α′ = Interval(a,b) equal to β′ = Interval (a, b). An

overview of the previous discussion is given in Table B.1.

Table B.1: Possible transitions in the scenario 1.

Before Equals Overlaps Meets Starts During Finishes

Before
√

× ×
√

× × ×
Equals ×

√
× × × × ×

Overlaps ×
√ √ √ √

×
√∗

Meets × × ×
√

× × ×
Starts ×

√
× ×

√
× ×

During ×
√

× ×
√ √ √

Finishes ×
√

× × × ×
√

So far it was assumed that the generalization of any interval of time of G results into

an interval of time of H . Notice that, this study extends the results obtained by (Euzenat

and Montanari 2005). Euzenat and Montanari 2005 just provides a conversion table

when both temporal granules remain as intervals after their generalization for a coarser

temporal granularity. However, the generalization of an interval of time of G may result
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Table B.2: Possible transitions in the scenario 4a.

Instant - Interval Relation
Before Starts During Finishes After

Before
√ √

× × ×
Equals Not Applicable
Overlaps ×

√
× × ×

Meets ×
√

× × ×
Starts ×

√
× × ×

During ×
√ √ √

×

Interval - Interval
Relation

Finishes × × ×
√

×

into an instant of time of H which changes a relation between two intervals of time to

a relation between an instant and an interval of time or the other way around (scenario

two). For these cases, Euzenat’s conversion table is no longer applicable.

Let’s consider again α = Interval(α−,α+) and β = Interval(β−,β+) be intervals of

time defined over a granularity G. There are two ways of a relation between α and β to

become a relation between an instant and an interval of time. The first one consists in α

turn out to be an instant α′ of H and β remains an interval of time β′ = Interval(β′−,β′+)

of H .

In these contexts, whenever there is an granule h ∈H such that E (β−) ⊆ E (h) ∧E (α) ⊆
E (h) then any relation (except finish relation) between α and β will become α′ starts β′.

For example, α = Interval(3,4) occurs before β = Interval (5, 8) becomes α′ = b starts β′ =

Interval (b, d). Another example can be: α = Interval(3,5) overlaps β = Interval (4, 7)

becomes α′ = b starts β′ = Interval (b, d).

Suppose that, α occurs before β. If there is h ∈H such that E (β−) ⊆ E (h) ∧α′ , h then

α′ will occur before β′. For example, α = Interval(1,2) occurs before β = Interval (3, 6).

After the generalization we get: α′ = a occurs before β′ = Interval(b,c).

Consider that, α occurs during β. If there is x,y ∈H such that E (β−) ⊆ E (x) ∧ E (β+) ⊆
E (y) ∧ x, α′ , y then α′ will occur during β′. For example, α = Interval(2,5) occurs

during β = Interval (2, 6) becomes α′ = b occurs during β′ = Interval (a, c). Con-

trary, if there is h ∈ H such that E (β+) ⊆ E (h) ∧ α′ = h then α′ will finish β′. For ex-

ample, α = Interval(9,10) occurs during β = Interval (7, 11) becomes α′ = e finishes

β′ = Interval (d, e).

Let’s assume α finishes β. In this case, if there is h ∈ H such that E (β+) ⊆ E (h) ∧
α
′

= h then α′ and β′ will keep the relation. For example, α = Interval(4,5) finishes

β = Interval (1, 5) then α′ = b also finishes β′ = Interval (a, b). Finally, if two intervals of

time are equal then this discussion is not applicable because there is no scenario in which

just one of them becomes an instant. Either α and β remain equal as intervals of time or

as instants of time. An overview of the previous discussion is given in Table B.2.

The other possible scenario consists in α remains an interval of time α′ =

Interval(α′−,α′+) of H and β turns out to be an instant of time β′ of H . In this case
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Table B.3: Possible transitions in the scenario 4b.

Interval.- Instant Relation
Before Starts During Finishes After

Before
√

× ×
√∗ ×

Equals Not Applicable
Overlaps × × ×

√∗ ×
Meets × × ×

√∗ ×
Starts Not Applicable
During Not Applicable

Interval - Interval
Relation

Finishes Not Applicable

and whenever there is an granule h ∈ H such that E (α+) ⊆ E (h) ∧ β ′ = h then a before,

overlaps or meets relation between α and β will become α′ finished by β′. For example,

α = Interval(1,3) occurs before β = Interval (4, 5) becomes α′ = Interval (a, b) finished

by β′ = b.

Suppose that, α occurs before β. If there is h ∈H such that E (α+) ⊆ E (h) ∧β ′ , h then

α′ will occur before β′. For example, α = Interval(1,3) occurs before β = Interval (7, 8).

After generalization, α′ = Interval (a, b) occurs before β′ = d. Regarding the relation

equals, starts, during and finishes this discussion is not applicable. In these cases and by

the relation definition, the extent of β contains the extent of α. In order to β turns out to

be an instant β′ implies that α becomes also an instant α′. An overview of the previous

discussion is given in Table B.3.

Furthermore, the generalization can turn a relation between intervals of time into a

relation between instants of time (scenario 6). Let’s assume α′ and β′ are two instants

of time of H that result from the generalization of α and β, respectively. In these cir-

cumstances, we can conclude that α′ and β′ will be equal in any generalization scenario

except if α and β are related through the before relation. Note that, these circumstances

the extent of β intersects the extent of α. As a result, in order to α and β turn out to be

instants implies that α′ and β′ are equal.

When α occurs before β, after the generalization, α′ and β′ can also be equal or the

before relation is “maintained”. If there is h ∈H such that E (α−) ⊆ E (h) ∧ E(β+) ⊆ E (h)

then α′ will occur before β′.

Until now, the discussion about the generalization of temporal terms and temporal

relations has its starting point from the generalization of two intervals of time. Now, let’s

consider α and β = Interval(β−,β+) be an instant and an interval of time defined over a

granularity G, correspondingly; and, let α′ and β′ = Interval(β′−,β′+) be an instant and

an interval of time, generalized from α and β respectively, of a granularity H (scenario 4).

A general rule can be stated regarding the relations between an instant and an interval

of time: if the granules involved (α and the endpoints of β) that are different before

generalization remain different in α′ and β′, i.e., after the generalization, then the relation

remain unchanged. The rationale is the same as it was in the generalization between
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APPENDIX B. TOPOLOGICAL RELATIONS ON TEMPORAL GRANULAR TERMS

Table B.4: Possible transitions in the scenario 3.

Instant - Interval Relation
Before Starts During Finishes After

Before
√ √

× × ×
Starts ×

√
× × ×

During ×
√ √ √

×
Finishes × × ×

√
×

Instant- Interval
Relation

After × × ×
√∗ √

Table B.5: Possible transitions in the scenario 2.

Interval - Instant Relation
Before Starts-1 During-1 Finishes-1 After

Before
√

× ×
√∗ ×

Starts-1 ×
√

× × ×
During-1 ×

√ √ √
×

Finishes-1 × × ×
√

×

Interval- Instant
Relation

After × × ×
√∗ ×

intervals of time. This is also applicable in case of interval-instant relations.

There are a few scenarios in which the relation between α and β is different from

the relation between α′ and β′. Suppose that, α occurs before β. If there is h ∈ H such

that E (α) ⊆ E (h) ∧ E (β−) ⊆ E (h) then α′ will occur before β′. Now, consider that α

occurs during β. If there is h ∈ H such that E (α) ⊆ E (h) ∧ E (β−) ⊆ E (h) then α′ will

starts β′. Contrary, if there is h ∈ H such that E (α) ⊆ E (h) ∧ E (β+) ⊆ E (h) then α′ will

finish β′. On the other hand, let’s consider α occurs after β. If there is h ∈ H such that

E (α) ⊆ E (h) ∧ E (β+) ⊆ E (h) then α′ will be finished by β′.An overview of the previous

discussion is given in Table B.4.

A similar discussion can be made if we consider α as an interval of time and β an

instant of time (scenario 3). An overview of the possible transitions is displayed in Table

B.5.

In same the way, the generalization can turn a relation between intervals of time into a

relation between instants of time also a relation between an instant and an interval of time

(or vice-versa) can become a relation between two instants of time (scenario 5). In case

of α and β are related through the start, during or finishes relation, in any generalization

scenario α′ and β′ will be equal. The reason is similar to the one exposed in the case of

intervals of time. If α occurs before or after β then α′ may keep occur before, or after

respectively β′, or be equal. The circumstances in which these changes occurs are similar

to the scenario four.

Last but not least, when two different instants of time ofG, α and β, are generalized for

two instants ofH , α′ and β′ (scenario 7), the relationship between α and β are kept if and

only if E
(
α
′)∩E (

β
′)

= ∅. Otherwise both instants of time become the same (at the gran-

ularity H). Furthermore, if two instants of time of G are equal, after the generalization,
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they remain equal.
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Abstracts Implemented

Measure Description Global Spatial Temporal Properties

Collision

Rate (%)

Percentage of spa-

tiotemporal gran-

ules with events,

where atom colli-

sions exists

• • •

Occupation

Rate (%)

Percentage of

granules with

events

• • •

Granular

Mantel

Bounded and

Normalized

Measures the spa-

tiotemporal inter-

action

• �

Frequency

Rate (%)

Percentage of

events happened

in granules

• •

Legend:

� Neighbourhood dependent ~ Semantic dependent
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APPENDIX C. ABSTRACTS IMPLEMENTED

Measure Description Global Spatial Temporal Properties

Bray-Curtis

Similarity for

Atoms

Calculates the

similarity based

on the counts of

atoms, between

consecutive

temporal grains

• �

Bray-Curtis

Similarity for

Synthesis

Calculates the

similarity based

on the number

of granular syn-

thesis, between

consecutive

temporal grains

• �

Correlation

Index For

Atoms

Correlation

between the

number of atoms

of consecutive

temporal grains

• �

Correlation

Index For

Synthesis

Correlation

between the num-

ber of granular

synthesis of con-

secutive temporal

grains

• �

Dice Similar-

ity (Binary)

Dice index (event

/ no event)

between consec-

utive temporal

grains

• �

Jaccard Sim-

ilarity (Bi-

nary)

Jaccard index

(event / no event)

between consec-

utive temporal

grains

• �
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Measure Description Global Spatial Temporal Properties

Gower Sim-

ilarity (Bi-

nary)

Similarity (event

/ no event)

between consec-

utive temporal

grains

• �

Moran’s I

Calculates the

spatial autocor-

relation among

nearby locations,

given a domain

specific variable

• � ~

Nearest

Neighbor

(NN)

Measures the

level of clustering
• • �

Z-score Near-

est Neighbor

(z-NN)

Measures the z-

score of the level

of NN

• • �

Spatial Scope

Measures the spa-

tial extent
• �

Spatial Con-

secutive Dis-

tance between

Centers of

Mass

Measures the

distance between

consecutive

centers of mass

• �

Center’s Mass

Positioning

Measures the po-

sition of the cen-

ters of mass

• • �

Reduction

Rate (%)

Measures the re-

duction of atoms

used

•

Average

Atoms in spa-

tiotemporal

granules (%)

Measures the

average of atoms

indexed by spa-

tiotemporal

granules

•
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D
Granular Mantel Bounded and Normalized

Popular methods that measure spatiotemporal interaction are Knox and Bartlett 1964,

Mantel 1967, Jacquez 1996 k Nearest Neighbor. The purpose of these tests is to have

a measure about the presence or absence of spatiotemporal clustering pattern or other

pattern that involves spatiotemporal interaction like the contagious process.

The previous methods have been used on spatiotemporal events in order to determine

to if the events are "interacting". In the end, the mentioned tests check whether events

are close to each other in space and in time. However, there are differences among their

computation.

The Knox statistic is calculated as the total number of event pairs where the spatial

and temporal distances (dsij and dtij , respectively) between pairs are within the specified

thresholds (α and β) (see Equation D.1) If interaction is present, the test statistic will be

large. Notice that, n is the number of events.

Knox =
n∑
i=1

n∑
j=1

asija
t
ij

asij =

 1,dsij < α

0, otherwise


atij =

 1,dtij < β

0, otherwise


(D.1)

The Mantel test keeps the distance information discarded by the Knox test. There are

two versions of the Mantel test statistic: (i) an unstandardized; (ii) a standardized version.

The unstandardized Mantel statistic is calculated by summing the product of the spatial

dsij and temporal distances dtij between all event pairs (see Equation D.2). Notice that,

Mantel introduces a constant c to the distance to prevent multiplication by zero.
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APPENDIX D. GRANULAR MANTEL BOUNDED AND NORMALIZED

Mantelunnormalized =
n∑
i=1

n∑
j=1

= (dsij + c)(dtij + c) (D.2)

The standardized test statistic is calculated by measuring the correlation the spatial

and temporal distance matrices:

Mantelnormalized =
1

n2 −n− 1

n∑
i=1

n∑
j=1

[
dsij−d̄s
σds

][
dtij−d̄t
σdt

]
(D.3)

where d̄s and d̄s are the average distance in space and time, correspondigly; and σds and

σdt refers to standard deviations, for distances in space and time, respectively. This test

statistic is the Pearson product-moment correlation coefficient. Therefore, the value falls

in the range of -1 to +1, where being close to -1 indicates strong negative correlation, +1

means strong positive correlation, and 0 indicates no correlation.

Instead of using the distance in space and time to determine proximity (like the Knox

test) the Jacquez test employs a nearest neighbor distance approach. The statistic is

calculated as the number of event pairs that are within the set of k nearest neighbors

from each other in both space and time, which is expressed formally as:

Jacquez =
n∑
i=1

n∑
j=1

asijka
t
ijk

asijk =

1, if event j is a k nearest neighbor of event i in space

0,otherwise


atijk =

1, if event j is a k nearest neighbor of event i in time

0,otherwise


(D.4)

We aim to measure spatiotemporal interaction among spatiotemporal events de-

scribed at some spatiotemporal LoD γ instead of raw spatiotemporal events. This arise

two requirements. One hand the measure must be comparable among LoDs of the event

predicate, and on the other hand, the measure must handle granular syntheses. Obvi-

ously, none of the tests detailed were designed to handle granular syntheses. However,

let’s discuss whether they might provide comparable values among LoDs or not.

The Mantel test (both versions) work with all events, and therefore, this test cannot

discover changes in the pattern of correlation at different distances (i.e., LoDs). To discuss

Knox and Jacquez test, let’ us mention a particularity when we have spatiotemporal events

modeled through the granularities-based model.

In some LoD of the event predicate, we have granular syntheses “interacting” with

each other. As long as we move to coarser LoDs, the co-occurrence of granular syntheses

in spatiotemporal grains increases. As a result, as long as we move to coarser LoDs, the

probability of pair of granular syntheses being at zero distance between each other also

increases. Consequently, the Knox and Jacquez values tend to increase as we consider
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coarser LoDs. This property make Knox and Jacquez not comparable among LoDs from

our perspective.

To meet this need, we introduce a new approach to measure the spatiotemporal inter-

action among granular syntheses in some LoD of the event predicate. This is expressed

formally as:

GMBN =
1

sum(fj )

n∑
i=1

n∑
j=1

(asij + cs)(a
t
ij + ct) ∗ fj

asij =


dsij
α ,d

s
ij < α

0, otherwise


atij =


dtij
β ,d

t
ij < β

0, otherwise


(D.5)

Our approach is an extension of the Mantel in order to take into account the granular

context. This way, the proposed test is calculated by summing the product of the spatial

asij , temporal distances atij and the number of events at the granular synthesis j, i.e. fj
between all granular synthesis pairs (see Equation D.5). Notice that, similarly to Mantel,

there is a constant ct and cs to prevent multiplication by zero.

Furthermore, in our case, the test is bounded as we are just considering the neighbors

within a spatial distance of α and a temporal distance of β. Moreover, in our case, the

test is also normalized as the distances asij and atij are being normalized by α and β, cor-

respondingly. This way, both space distances and temporal distances are placed between

0 and 1, and contribute equally to the end result. Finally, the end result is normalized

by the summing of all fj . For these reasons, we called the proposed test the Granular

Mantel Bounded and Normalized (GMBN).
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